Visualization System for Evolutionary Neural
Networks for Deep Learning

Junghoon Chae, Catherine D. Schuman, Steven R. Young, J. Travis Johnston, Derek C. Rose, Robert M. Patton and
Thomas E. Potok
Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
{chaej, schumancd, youngsr, johnstonjt, rosedc, pattonrm, potokte } @ornl.gov

Abstract—Deep learning is actively used in a wide range of
fields for scientific discovery. To effectively apply deep learning
to a particular problem, it is important to select an appropriate
network architecture and other hyper-parameters (at each layer).
Evolving architectures and hyper-parameters using a genetic
algorithm is one current approach to search the huge space of
all possible configurations to find those more optimal for the
problem. However, examining an evolutionary process and tuning
the genetic algorithm are challenging, pushing most users to treat
the process as a black box. To address this challenge, we propose
a visualization system for evolutionary neural networks for deep
learning. The key feature of our visualization system is to provide
a visual analytics environment for evaluating a genetic algorithm
in order to improve the underlying operations to reduce time to
find good solutions. Our system is able to not only visualize how a
genetic algorithm traverses its search space but also allows users
to examine evolving networks in-depth to get insights to improve
performance through interactive visualization components.

Index Terms—visualization, neural network, evolutionary al-
gorithm

I. INTRODUCTION

Neural networks for deep learning are actively used for
scientific discovery in a wide range of fields, such as materials
science, physics, and biomedical applications. Unfortunately,
there is no one neural network model that can solve many dif-
ferent problems and work for different types of data. Instead,
for solving a particular problem, we should select an appro-
priate network architecture and a set of hyper-parameters for
each layer. Evolving neural networks is an efficient approach
to find appropriate model configurations in the huge search
space. In evolutionary computation, genetic algorithms and
evolutionary strategies are capable of training neural networks
with a huge number of parameters [1]-[3]. However, the
evolutionary process—how crossover and mutation operations
assemble the final network—is treated as a black box. Also,
examining and tuning the genetic algorithm parameters are
also challenging.

Notice: This manuscript has been authored by UT-Battelle, LLC under
Contract No. DE-ACO05-000R22725 with the U.S. Department of Energy. The
United States Government retains and the publisher, by accepting the article
for publication, acknowledges that the United States Government retains a
non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce
the published form of this manuscript, or allow others to do so, for United
States Government purposes. The Department of Energy will provide public
access to these results of federally sponsored research in accordance with
the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-
plan).

Nl e N e N = Y e—e———
AN AVARY, \/ e \VRAVAaY\8 \/

-\k/

Fig. 1. System Overview: The system consists of three different views: a
lineage view, a fitness-parameter view, and a network architecture view.

Visualization for a genetic algorithm can be helpful to
open the underlying mechanics of the genetic algorithm and
support the tuning step [4], [5]. In this paper, we propose a
visualization system for evolutionary neural networks for deep
learning. Our visualization system provides a visual analytics
environment for evaluating a genetic algorithm in order to
improve the genetic algorithm to search for the optimized
solution in less time. Our system is able to not only visualize
how a genetic algorithm traverses a search space, but also
allows the users to examine evolving neural networks in-
depth and get insights to improve its performance through
many interactive visualization components. Our visualization
system consists of three major views: a lineage view, a
fitness-parameter view, and a network architecture view. The
three views visualize different features of the evolutionary
process. This allows the results of evolutionary computation
to be visualized from different perspectives. Also, the views
are connected to each other and provide interactive analysis
features. The contributions we focus on include:

o Our system helps users analyze how a genetic algorithm
explores the search space.

e Our system allows users to see convergence behav-
ior—how a genetic algorithm finds solutions (networks)
for a particular problem.

e Our system allows users to analyze the relevance of



The final converged network

Fig. 2. Lineage View: this view uses a force-directed layout to show parent-child relationships of networks of the evolutionary process. The size of node
represents the number of child nodes(networks) and node colors indicate fitness of nodes.

multiple dimensions over the evolutionary process.
e Our system shows how the network architectures con-
verged as evolution progresses.

II. BACKGROUND

Visualization of Genetic Algorithm: A genetic algorithm
is based on the biological methods to produce the best solu-
tions for a particular problem [6]. These algorithms are based
on random search methods and widely used to solve opti-
mization problems. However, understanding and improving the
searching process of a genetic algorithm are challenging. Many
studies have tackled the challenges using visualization-based
approaches [4], [5], [7]. The previous studies have focus on
showing static images of ancestry trees or traditional graphs
and visualize few dimensions of the search space of the genetic
algorithm. Farooq et al. [8] proposed an interactive interface
to interrupt the searching process, though it has still many
limitations to understand the evolutionary process. Our visu-
alization system provides highly interactive analytics features
for more comprehensive analysis of evolutionary process. Our
system gives users the ability to explore entire dimensions of
the search space as well as analyze the connections between
multiple dimensions.

Evolutionary Neural Network: When applying deep learn-
ing techniques to a specific problem, a necessary step is finding
an appropriate neural network model for the problem. Finding
an appropriate model includes selecting an appropriate net-
work architecture and a set of hyper-parameters for each layer.
This step is usually time-consuming and requires much trial
and error. Evolving neural networks using a genetic algorithm
is an efficient approach to find a good network configuration
in the huge search space [1], [9], [10]. The evolutionary
approach taken by Multi-node Evolutionary Neural Networks
for Deep Learning (MENNDL) [1] encodes an individual—-
a single neural network—as a sequence of genes; the genes
provide instructions for how to (uniquely) reconstruct the
neural network. MENNDL uses HPC resources with many
GPUs (such as the Summit supercomputer) to train many
different individuals simultaneously, one individual per GPU.
The fitness of an individual can be scored in many ways but the

focus is typically on the accuracy of the trained neural network
on a validation set. As individuals from the population of
networks are trained and evaluated, the best individuals (those
with the highest fitness) become parents to the next generation
of individuals. A child is created by performing cross-over and
mutation on the genes of its parents and is subsequently evalu-
ated in a similar fashion. The process repeats (asynchronously)
until the genetic algorithm converges, hopefully to a network
with sufficiently high fitness. During the evolutionary process
we store the characteristics of individuals (fitness, accuracy,
and other features) as well as the lineage of the individuals
(i.e. which networks were the parents of this network).

III. SYSTEM OVERVIEW AND DATA

The visualization system we propose contains three views
that visualize different aspects of the networks in the evo-
lutionary process of MENNDL (see Figure 1). The first
view is a lineage view, showing parent-child relationships in
the evolution, as shown in Figure 1 (1). In this view, we
utilize a forced-directed layout to show the lineage, where
nodes represent parent/child networks and edges represent
their relationships. The second view is a fitness-parameter
view, showing the changes in fitness and hyper-parameters of
the networks as evolution progresses using line and scatter
plots, as shown in Figure 1 (2). The third view is a network
architecture view, which shows how the layers of each network
are stacked and how the network architectures converged as
evolution progresses, as shown in Figure 1 (3).

The views are tightly connected each other and provide
interactive user interfaces for analysis. The system allows
users to link over the three views in order to understand
the eovolutionary process better through interacting with the
presented data through different representations. The inter-
action techniques of the views, such as exploration, filter,
selection, and reconfigure, overcome the limitation of static
representations and support to uncover insights [11].

Data for our system is generated by the MENNDL frame-
work. However, as the format of data is general and simple,
making any framework generate data for the system is easy.
The system uses two different types of data: lineage data and



%00

convad

v kernel1
v kernel2
v stride1
v stride2
« padding1
v padding2
.

= fitness: 88

= kernel1: 11
kernel2: 17

= stride1: 4

Fig. 3. Fitness-Parameter View: Line plot for fitness (Top) and Scatter plot for hyper-parameters (Bottom). The two plots are vertically aligned. Users are

able to interactively explore and examine fitness and the hyper-parameters.

network data. The lineage data contains the lineage informa-
tion of networks, i.e., parent-child relationships. The network
data contains the network topology and hyper-parameters of
each layer. The format of the network data we use is prototxt
or json. The two data files are connected by sharing unique
network IDs.

IV. LINEAGE VIEW

The central idea of the lineage view is to provide an im-
mediate intuitive understanding of the dynamics of the whole
evolutionary process by combining other features of evolution-
ary computation. The dynamics of evolution are represented
as an ancestry tree while we integrate other features into the
tree. Note that the ancestry tree generated by the genetic
algorithm of MENNDL does not have clearly distinguished
generations due to its asynchronous nature. Under MENNDL’s
asynchronous evolution, child networks can be mutated or
recombined from any ancestor networks that already exist. As
such, the traditional tree diagram is not appropriate to show
the complex lineage information. We utilize a force-directed
layout [12]. The force-directed layer is one of the best choices
to show the complete ancestry of the networks. The force-
directed layout is able to capture the relations between parent
and child networks even though there is no explicit generations
in the evolutionary process. In this view, each node represents
a network and the edges show the relationships between the
networks, as shown in Figure 2.

The size of each node represents the number of children of
the node. This means that the larger node has more influence
on the entire ancestry tree. The color of the node indicates
the fitness value of the corresponding network. Networks with
low fitness are dark purple and networks with high fitness are
bright yellow. We let the force simulator make all nodes repel
against each other. However, the link force pushes linked nodes
together. Eventually, the nodes that have a direct parent-child
relationship are adjacently placed. This allows users to see the
changing characteristics of populations as evolution progresses
even though there are no explicit generations. For example,
Figure 2 shows how fitness and lineage change. Note the large
bright yellow node at the right hand side of Figure 2. This node
is the final converged network for the genetic algorithm which
has the highest fitness score and the largest number of child
networks. In this view, when the mouse cursor hovers over a
specific node, detailed information for that node is shown. In

result, this visualization system allows users to analyze how
a genetic algorithm explores the search space and discover
the path taken by the genetic algorithm to find solutions for a
particular problem.

V. FITNESS-PARAMETER VIEW

The fitness-parameter view allows the users to interac-
tively explore and compare how fitness and selected hyper-
parameter values of networks change over the course of
evolution. As mentioned earlier, we need an efficient method
to find an appropriate set of hyper-parameters in searching
a high-dimensional hyper-parameter space. When we use the
approach based on evolution, an analogy between fitness
and hyper-parameters is helpful in finding appropriate hyper-
parameter sets [7], [13]. For example, if we realize specific
situations that cause fitness decreases, we can tune the genetic
algorithm to avoid such situations. Also, if we find what
could be unimportant dimensions of the hyper-parameter space
through the visualization, we can also adjust the algorithm to
skip the unimportant dimensions.

The fitness-parameter view consists of two parts: a line plot
for fitness (Top) and a scatter plot for hyper-parameters (Bot-
tom), as shown in Figure 3. After users select a specific layer
in the network architecture view, the scatter plot appears and
shows the hyper-parameters of the selected layer (described
more in detail in Section VI). The x-axis of the two plots is
the index of networks ordered according to the creation time.
The y-axis of the line plot is the fitness value, and the y-axis of
the scatter plot is the parameter value according to the selected
layer and parameters. The two plots are aligned vertically.
when the mouse cursor hovers over the view, a dashed vertical
line and detailed values appear and users can easily compare
the values (See Figure 3). Each parameter has different color.
The user can select and view the parameters of interest using
the check boxes on the right side of the view.

VI. NETWORK ARCHITECTURE VIEW

The major goal of the network architecture view is to ex-
plore evolution of the network architectures—how the layers of
each network are arranged and how the network architectures
are converged over evolution progress. In this view, users
are able to focus on network architectures rather the hyper-
parameters for layers. As we described in Section II, the search
space of the genetic algorithm of MENNDL includes the
arrangement of layers within a network as well. The network



A network m Level 1: Convolution
Level 2: PReLU
=Level 3: Inception
u Dominant .
u === |ayer types
" === - ateach u
u

level

The green bar below the
network indicates the

The size of a color bar shows
the occupancy ratio of a layer

number of networks with type for each level. (e.g., 61%
the same layer of layer type is linear at the last
arrangement. level)

Fig. 4. Network Architecture View: A set of vertically aligned small boxes
represent a network architecture. The series of the box sets show the evolution
of the network architectures.

architecture is one of the most important aspects that affect
the performance of convolutional neural network models [9],
[10].

In this view, a network architecture is represented by a set
of small boxes that are vertically aligned in Figure 4 (Right).
Each box represents a layer and the arrangement of boxes
reflects the arrangement of the layers in the network. For
example, the top box in the set means the layer at the first level
and the layer is a convolution layer. The colors of boxes repre-
sent specific layer types, and we use the same color for layers
with similar types. For example, relu, prelu, and leakyrelu
layers have a same orange color. The sets of boxes are listed
horizontally in order by the corresponding network creation
time. In the example shown in Figure 4 (Left), users can easily
perceive how the network architectures evolve. Also, when
an user clicks a node in the lineage view, the corresponding
network is highlighted. Visualizing the connections between
the multiple features (lineage, fitness and architecture) helps
the user analyze the performance of the genetic algorithm.
There are green bars below each set of boxes. The size of a
green bar indicates the number of networks with the same layer
arrangement for the corresponding network. For example, if
a bar below a network is long, there are many networks that
have the identical layer arrangement.

At the right side of view, there are color bars at each level
in Figure 4. The colors of each bar show dominant layer
types for each level and the bar size represents the occupancy
ratio of the dominant layer type. Also, users can see the
layer type texts inside the boxes and the ratio number appears
when a mouse cursor hovers over a bar. This visualization
component gives the summary of the network architectures
of the whole evolutionary process. The information can be
useful for tuning the genetic algorithm. Also, when users click
one of the bars, the hyper-parameters of the corresponding
layer appear on the fitness-parameter view. Figure 3 shows the

Fig. 5. Comparison of network architectures between early (Left) and late
(Right) generations: There are no specific patterns in the early generation but
there is a specific converged pattern in the late generation.

example of selection of the convolution layer at the first level.
The users can easily compare corresponding hyper-parameters
and the network architecture because the fitness-parameter and
network architecture views are also vertically aligned (See
Figure 1).

As a case study, the two images in Figure 5, show two
sub-sets of the entire network architectures. The left image
represents an early generation (network index: 0 to 40) and
the right one represents a late generation (network index: 800
to 840, the final index is 980). We can clearly perceive the
difference between the two sub-sets. For the early generation,
there are no specific patterns on the network architecture.
On the other hand, for the late generation, we can see a
specific similar pattern. Users can easily see when and how the
evolution converged in terms of network architecture through
this visualization. This visualization also helps the users un-
derstand the genetic algorithm and potentially provides insight
into improving it.

The network architecture view also provides interactive
analytics interfaces. In Figure 4, there are check boxes for
each level. Users are able to filter the networks of interest by
checking the check boxes. As the first two examples shown in
Figure 6, the left image shows an example of filtering networks
with convolution layers at the first and 11th levels. The other
image shows an example of filtering networks matching to all
the dominant layer types. The users can also select a specific
network in the series of the networks and then the ancestry
tree, links between the selected network and its parents appears
as blue curves as shown in Figure 6 (Right).

Network Filtering Ancestry Tree

(T TR

Fig. 6. Network Filtering and Ancestry Tree: Users can filter network of
interest. Ancestry tree of the selected network provides lineage information.



VII. CONCLUSION

We have proposed a visualization system for evolutionary
neural networks for deep learning and described what and
how the three different views of the system visualize an
evolutionary process. We have also demonstrated how in-
teractive visualizations help users understand, examine, and
improve a genetic algorithm. However, limitations still remain.
It is still hard to find a causal relationship between fitness
and hyper-parameters, even though comparing both values is
available through the fitness-parameter view. Our system is
not able to explicitly show why a genetic algorithm operates
well or not in the evolutionary process. Also, the proposed
visualization techniques have limitations. As future work, we
will investigate ways to address the challenging tasks and
improve the visualization techniques.

ACKNOWLEDGMENT

This material is based upon work supported by the U.S.
Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research, under contract number DE-
ACO05-000R22725. This research is sponsored in part by the
Laboratory Directed Research and Development Program of
Oak Ridge National Laboratory, managed by UT-Battelle,
LLC, for the U. S. Department of Energy.

This research used resources of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S. Depart-
ment of Energy under Contract No. DE-AC05-000R22725.

REFERENCES

[1] S.R. Young, D. C. Rose, T. P. Karnowski, S.-H. Lim, and R. M. Patton,
“Optimizing deep learning hyper-parameters through an evolutionary
algorithm,” in Proceedings of the Workshop on Machine Learning
in High-Performance Computing Environments, ser. MLHPC ’15.
New York, NY, USA: ACM, 2015, pp. 4:1-4:5. [Online]. Available:
http://doi.acm.org/10.1145/2834892.2834896

[2] F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, and
J. Clune, “Deep neuroevolution: Genetic algorithms are a competitive
alternative for training deep neural networks for reinforcement learning,”
ArXiv, vol. abs/1712.06567, 2017.

[3] T. Salimans, J. Ho, X. Chen, and I. Sutskever, “Evolution strate-
gies as a scalable alternative to reinforcement learning,” ArXiv, vol.
abs/1703.03864, 2017.

[4] N. F. McPhee, M. M. Casale, M. Finzel, T. Helmuth, and

L. Spector, “Visualizing genetic programming ancestries,” in

Proceedings of the 2016 on Genetic and Evolutionary Computation

Conference Companion, ser. GECCO 16 Companion. New York,

NY, USA: ACM, 2016, pp. 1419-1426. [Online]. Available:

http://doi.acm.org/10.1145/2908961.2931741

E. Hart and P. Ross, “Gavel - a new tool for genetic algorithm

visualization,” IEEE Transactions on Evolutionary Computation, vol. 5,

no. 4, pp. 335-348, Aug 2001.

[6] J. H. Holland, Adaptation in Natural and Artificial Systems: An Intro-
ductory Analysis with Applications to Biology, Control and Artificial
Intelligence. Cambridge, MA, USA: MIT Press, 1992.

[71 W. B. Shine and C. E. Eick, “Visualizing the evolution of genetic
algorithm search processes,” in Proceedings of 1997 IEEE International
Conference on Evolutionary Computation (ICEC ’97), April 1997, pp.
367-372.

[8] H. Farooq, N. Zakaria, and M. T. Siddique, “An interactive
visualization of genetic algorithm on 2-d graph,” Int. J. Softw. Sci.
Comput. Intell., vol. 4, no. 1, pp. 3454, Jan. 2012. [Online]. Available:
http://dx.doi.org/10.4018/jssci.2012010102

[5

[t}

[9]

[10]

[11]

(12]

[13]

R. Miikkulainen, J. Z. Liang, E. Meyerson, A. Rawal, D. Fink, O. Fran-
con, B. Raju, H. Shahrzad, A. Navruzyan, N. Duffy, and B. Hodjat,
“Evolving deep neural networks,” ArXiv, vol. abs/1703.00548, 2017.
H. Zhang, S. Kiranyaz, and M. Gabbouj, “Finding better topologies
for deep convolutional neural networks by evolution,” ArXiv, vol.
abs/1809.03242, 2018.

J. S.Yi, Y. a. Kang, and J. Stasko, “Toward a deeper understanding of
the role of interaction in information visualization,” IEEE Transactions
on Visualization and Computer Graphics, vol. 13, no. 6, pp. 1224-1231,
Nov 2007.

T. M. J. Fruchterman and E. M. Reingold, “Graph drawing
by force-directed placement,” Softw. Pract. Exper, vol. 21,
no. 11, pp. 1129-1164, Nov. 1991. [Online]. Available:
http://dx.doi.org/10.1002/spe.4380211102

R. Wang, J. Clune, and K. O. Stanley, “Vine: An open source
interactive data visualization tool for neuroevolution,” in Proceedings
of the Genetic and Evolutionary Computation Conference Companion,
ser. GECCO ’18. New York, NY, USA: ACM, 2018, pp. 1562-1564.
[Online]. Available: http://doi.acm.org/10.1145/3205651.3208236



