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a b s t r a c t 

We present a new visual analytics system, called CrossVis, that allows flexible exploration of multivariate 

data with heterogeneous data types. After presenting the design requirements, which were derived from 

prior collaborations with domain experts, we introduce key features of CrossVis beginning with a tabular 

data model that coordinates multiple linked views and performance enhancements that enable scalable 

exploration of complex data. Next, we introduce extensions to the parallel coordinates plot, which include 

new axis representations for numerical, temporal, categorical, and image data, an embedded bivariate axis 

option, dynamic selections, focus+context axis scaling, and graphical indicators of key statistical values. 

We demonstrate the practical effectiveness of CrossVis through two scientific use cases; one focused on 

understanding neural network image classifications from a genetic engineering project and another in- 

volving general exploration of a large and complex data set of historical hurricane observations. We con- 

clude with discussions regarding domain expert feedback, future enhancements to address limitations, 

and the interdisciplinary process used to design CrossVis. 

© 2020 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Forming a comprehensive understanding of patterns and rela-

ionships in multivariate data, where the phenomena under inves-

igation are influenced by multiple factors, is integral to unlocking

he full potential of today’s vast data sets, especially in scientific

omains. Whether interpreting the output of deep learning algo-

ithms or exploring historical climate observations, scientists re-
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uire interactive tools to develop a comprehensive understanding

f large, multivariate data sets. 

Developing new and improved multivariate visualization tech-

iques for data exploration has captured the attention of many

esearchers as evidenced by a recent survey from Liu et al. [1] .

owever, real world analysis of such data remains a significant

hallenge for several reasons. One challenge is rooted in the tech-

ical difficulties of exploring increasingly large volumes of data.

nother lies in equipping scientists with effective sense-making

echniques (e.g., visual representations, interactive queries) for

ultivariate patterns. In practice, multivariate data sets often con-

ain heterogeneous data types, missing values, and quality issues,

hich exacerbate the problem. Even with moderately sized data

ets, heterogeneous data types represent a significant barrier to

horough data exploration. But when data sets are large and con-

ain a mixture of data types (e.g., numeric, categorical, temporal,

nd image data) with problematic values, developing an adequate

nderstanding of the data with the tools at hand becomes in-

reasingly difficult, especially when coupled with the scientist’s

esire to freely navigate alternate paths during their analytical

ourney. To develop a comprehensive understanding, scientists

eed comprehensive solutions that address these challenges. 
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Fig. 1. The CrossVis system presents several interactive views of multivariate data that are coordinated using a single tabular data model. The main view, an extended 

version of the parallel coordinates plot, is supplemented with scatterplots, correlation visualizations, and image views to foster creative exploratory data analysis. CrossVis’s 

interactive query capabilities help uncover key patterns, which are revealed through the various visual representations. 
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Visual analytics offers a viable approach for coping with these

issues [2,3] . By blending interactive visualizations with compu-

tational guidance, well-designed visual analytics systems harness

human and computational strengths to improve the outcomes of

data-driven studies. Yet, the number of visual analytics techniques

that are readily available to non-visualization experts for practi-

cal use with large, heterogeneous, and multivariate data, which are

ubiquitous in modern scientific studies, is low, especially when a

combination of capabilities is desired. 

In light of these and other practical challenges, we have de-

veloped the CrossVis visual analytics system (shown in Fig. 1 )

in collaboration with domain experts. CrossVis expands the par-

allel coordinates plot (PCP) [4] to support new axis represen-

tations for several non-numeric data types, embedded bivariate

PCP axes, linked supplemental visualizations, focus+context axis

scaling, and views that vary the level of detail. A progressive

rendering algorithm and an optimized data model provide sup-

port for large data sets. These features are motivated by feed-

back from domain experts in multiple scientific domains. This pa-

per presents the design and integration of these methods into a

flexible system that enables comprehensive multivariate data ex-

ploration. The main contributions of the current work include the

following: 

• New visual representations of numerical, categorical, temporal,

image, and bivariate PCP axes that, when combined with linked

supplemental visualizations and interactive queries methods,

reveal trends and patterns in heterogeneous, multivariate data 
• Functional design considerations related to the visual represen-

tations provided by CrossVis including discussion of alternative

approaches 
• An overview of CrossVis describing the incorporation of several

PCP extensions (visual representations and interaction tech-

niques) into a comprehensive system that is greater than the

sum of its parts 
• Feedback from domain experts following their application of
CrossVis to practical scientific data analysis scenarios 
. Related work 

CrossVis employs multiple visualization methods, such as scat-

erplots, tiled image views, and correlation heatmaps, but the

ocal point is an extension of the classic PCP technique. Insel-

erg [4] initially popularized the PCP as a method for visualizing

yper-dimensional geometries and later Wegman [5] applied it to

he analysis of multivariate data. The standard PCP method yields a

ompact two-dimensional representation of multidimensional data

ets by mapping the N -dimensional data tuple C with coordinates

 c 1 , c 2 , . . . , c N ) to points on N parallel axes, which are joined us-

ng a polyline [6] . The PCP is attractive for exploratory data anal-

sis because it transforms high-dimensional data sets into a two-

imensional plot without dimensionality reduction. Although the

umber of variables that can be shown is only geometrically re-

tricted by the resolution of the display, axes that are located next

o one another yield the most obvious insight. To analyze relation-

hips between variables that are separated by one or more axes,

nteractions and representations of information derived from ana-

ytical algorithms are necessary. 

As recent surveys of PCP methods [7,8] and a book on PCPs by

nselberg [6] demonstrate, the drive to improve and apply PCPs

as attracted considerable attention. In addition to extensions of

he technique, a significant portion of the prior work involves the

pplication of PCPs to a wide variety of domains, such as climate

cience [9–11] , cybersecurity [12] , computer forensics [13] , genet-

cs [14] , biomedical [15] , healthcare [16] , and environmental pollu-

ion [17] . 

CrossVis implements several common PCP interactions building

n the direct interaction techniques described in Siirtola [18] and

isual data mining methods reviewed by Inselberg [6] . These in-

eractions enhance exploratory data analysis and include polyline

elections, reorderable axes, and details on demand. CrossVis also

xtends the standard PCP axis with graphical indicators of various

ummary statistics following earlier designs by Hauser et al. [19] .

he current work describes extensions to these interactions as well

s linkages to new visual representations. 
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PCPs and scatterplots [20] are two of the most popular

ultivariate data visualization techniques. Due to complemen-

ary characteristics, some prior work has combined the two

nto a single layout [17,21] using a coordinated multiple view

CMV) strategy [22] . Yuan et al. [23] introduced the scatter-

ng points technique to embed scatterplot points between PCP

xes. Both PCPs and scatterplots excel at showing correlation

elationships between variables [24] . Some previous work di-

ectly augmented standard PCPs with graphical indicators that en-

ode correlation metrics, such as the Pearson correlation coeffi-

ient, to guide users to potentially significant trends [18] . Zhou

nd Weiskopf [25] delved deeper into correlation analysis us-

ng PCPs by introducing an indexed point representation of mul-

ivariate correlations as opposed to most PCP systems that fo-

us on the relationships between pairwise variable combinations.

n addition to supplemental scatterplots and correlation indica-

ors, CrossVis includes the ability to interactively embed a scatter-

lot between axes in the main PCP view to investigate pairwise

orrelations. 

Although the vast majority of PCP methods focus on numerical

ata, the desire to represent other data types has inspired PCP ex-

ensions. Kosara et al. [26] introduced the ParallelSets technique to

llow interactive representations of categorical data. Fernstad and

ohansson [27] demonstrated that the ParallelSets method is supe-

ior to common quantitative encodings of categorical data in fre-

uency related tasks. More recently, Vosough et al. [28] described

he parallel hierarchies technique, which used parallel Icicle Plots

o display hierarchical categorical data. CrossVis includes a varia-

ion of the ParallelSets approach for representing categorical data

s well as new representations for temporal and image data. To

he best of our knowledge, CrossVis represents the first PCP system

ith support for numerical, temporal, categorical, and image-based

ata in a single PCP framework. 

When dealing with some moderate and most large scale data

ets, PCPs are prone to polyline overplotting and occlusion is-

ues [24,29] . Clustering [29,30] and binning methods [31] alle-

iate these issues by reducing the number of polylines that are

endered. Other approaches include alpha blending and displaying

tatistical representations (e.g., summary statistics, histograms), in

ieu of or in combination with polylines, to represent the data at

 higher level of detail [18,19,32,33] . Finally, both graphical pro-

essing units (GPUs) [34] and distributed computing infrastruc-

ure [35] have been harnessed to improve the rendering speed

nd scalability of PCPs. CrossVis uses a progressive rendering al-

orithm that leverages system GPUs for improved performance. In

ddition, CrossVis uses statistical representations of raw data to

rovide summarized levels of detail, thereby reducing the need

o represent every individual polyline for large data sets. CrossVis

lso integrates a focus+context technique for PCPs, which allows

sers to zoom into ranges of interest on numerical and temporal

xes with dense clusters of polylines while maintaining contextual

wareness, similar to work by Novotný et al. [31] and more re-

ently Richer et al. [36] where a focus+context approach is formal-

zed with abstract PCPs. 

. Design requirements 

For over a decade, we have collaborated closely with scientists

rom climate, materials science, manufacturing, and other fields

hat engage in multivariate data analysis. Through these engage-

ents, we have observed two fundamental limitations. At the on-

et of these collaborations, scientists often state that they fail to ex-

mine enough of their data . This issue is partially due to large data

olumes, but other factors come into play such as inadequate vi-

ualization support for heterogeneous data types and cumbersome

uery support. Scientists also state that although they are good at
nding patterns they already know, new discoveries are slow to oc-

ur . This issue can be tied to an inability to interactively explore

he full data set as well as the application of automated methods

r workflows that focus on known relationships, which can lead to

nchoring bias. 

We postulate that more flexible human-centered interactions,

calable visualizations, and comparative techniques that are tai-

ored to specific data types are viable solutions to these issues. In

he remainder of this section, we consider these issues in greater

etail and present the design requirements that have guided the

evelopment of CrossVis. 

R1: The visualizations should show the distinguishing characteris-

ics of heterogeneous data types. Visualizations of multivariate data

ften transform temporal and categorical data into numerical val-

es because a wider range of numerical representations are avail-

ble. However, this process often leads to misleading statistical

ummaries and informative characteristics of the native data types

re discarded. Therefore, CrossVis includes visual representations

hat are tailored to key data types (e.g., temporal, categorical, im-

ges) to enable more comprehensive analysis. 

R2: The system should support flexible comparative analysis of

ariables and subsets. The ability to compare different variables

nd/or subsets of values empowers scientists to freely ask ques-

ions and explore more of the data. This capability is challeng-

ng for multivariate data sets, especially heterogeneous data, due

o the number of ways items can be compared. To meet these

emands, scientists require the ability to quickly select data. Fur-

hermore, visual representations must clearly highlight variations

etween selections. Often both direct and indirect selections are

ecessary; precise adjustment capabilities for selecting parameters

hrough indirect controls can complement fast and approximate di-

ect selections. 

R3: The system should clearly link selections in separate views

f the data through highlights in the visual representations. Sepa-

ate visualizations should be linked through interactions so that

hanges in one view are propagated to all views. Each view

hould be designed to clearly communicate specific aspects of the

ata to increase the probability of finding new insights. A viable

ay to achieve this requirement is to provide coordinated multi-

le views where interactions are managed using a separate data

odel that shares selection state through an event-based listener

nterface. 

R4: The system should maintain responsive interactions and visu-

lizations. Exploratory data analysis techniques must maintain re-

ponsive interactions to avoid disrupting cognitive flow. By spawn-

ng threads to handle different aspects of interaction, summariza-

ion, and rendering, the system can orchestrate processing de-

ands and prioritize tasks vital to interactive performance. Ren-

ering threads are launched to render subsets of the updated data

nd progressively refine of the visualization. The result is an in-

rease in perceived scalability with large data sets. In addition,

omputational optimization, preprocessing, and caching strategies 

elp sustain interactive performance. 

R5: The visualizations should support views at multiple scales. A

omplementary approach to progressive rendering is to summarize

he raw data at different levels of detail to reduce the number of

raphical elements that are needed to display the essence of the

ata. In addition to reducing rendering times, summarized views

educe occlusion and clutter. In CrossVis, variable detail displays

re implemented using a hierarchy of statistical summaries that

rill down to raw data views. 

R6: The visualizations should display magnified views with con-

ext. Focus+context techniques that allow users to expand or zoom

nto specific regions of interest in the overall data space are help-

ul for selectively probing higher levels of detail on demand. Focus

egions magnify data within a particular range and provide contex-
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Fig. 2. A tabular data model supports multiple data types and provides access to 

both raw data and statistical summary information. The data model also coordinates 

user queries across the linked visualizations. 
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tual awareness by preserving the proximity of the focused region

within the whole. These capabilities make dense clusters of shapes

more legible. 

4. Introducing the CrossVis system 

As shown in Fig. 1 , CrossVis is comprised of a main visualiza-

tion panel that is supplemented by other linked views. In addition

to detailed table views, the main panel is augmented by a correla-

tion matrix, scatterplots, and image-based visualizations. The main

visualization panel is an extension of the PCP featuring a unique

combination of axis representations and embedded visualizations

of statistical information. 

CrossVis is an open source application 

2 with performance en-

hancements that address the large scale analysis needs mentioned

in R4 . The JavaFX graphics library is used to render geometric

shapes and the JavaFX user interface library is used for layouts,

menus, and windows. These libraries automatically utilize system

GPUs to boost rendering performance in a platform independent

manner. In addition, the rendering algorithms use parallel threads

to prioritize the display of more salient visual features and pro-

gressively reveal more details. In the remainder of this section, the

data model and key data visualization techniques are described. 

4.1. Tabular data model 

CrossVis is supported by a custom-developed, tabular data

model (see Fig. 2 ) that stores raw data, derived statistics, and selec-

tion criteria using collections of row and column objects. This data

model is a critical component in CrossVis, and it is integral to ful-

filling all of the previously mentioned requirements ( R1–R6 ). Data

structures are allocated in working memory as files are loaded, but

these structures are not serialized to disk like a typical database

system. The data model provides optimized statistical summaries,

fast data access, and modular support for columns of numeric, cat-

egorical, temporal, and image data. Internally, row data are stored

in native data types using a generic object array. A row-based data

structure is implemented to match the access patterns of the PCP

rendering algorithms, which display row tuples as polylines. The

column objects store metadata and summary statistics, and they
2 CrossVis is available at https://github.com/ORNL/CrossVis . 

g  

t  

t  
rovide convenience methods for accessing data elements as na-

ive values. Caching mechanisms are also integrated for improved

erformance. 

The data model manages subset selections using column selec-

ion criteria (e.g., value ranges, value sets) and an event-based lis-

ener interface to propagate changes. Data views register as listen-

rs with the data model and implement a set of interface meth-

ds to respond to changes. Data views transmit user interactions

o the data model, which notifies registered listeners. For quick ac-

ess, the data model also maintains a query object that holds col-

mn selection criteria and references to the currently selected and

nselected rows. 

Column objects store summary statistics for the overall data

istribution. The query object also stores column summary statis-

ics for both the selected and the unselected rows. As selection

riteria change in the visualizations, the data model detects the

hanges and updates the statistical summaries, which triggers the

vent-listener interface and forces other views to redraw. The sum-

aries supply the visualizations with a fast level of detail hierarchy

hat enables multiple scale views. Standard descriptive statistics

e.g., mean, median, standard deviation, interquartile ranges) are

alculated for numerical columns, and frequency-based statistics

e.g., histograms) are calculated for numerical, categorical, tempo-

al, and image data. 

The CrossVis data model performance is highly dependent on

he host system’s processor, graphics cards, and memory configu-

ations. Most development occurred on a MacBook Pro with 16GB

f random access memory, a 3.1GHz Intel Core i7 processor, and

 4GB AMD Radeon Pro 5600 GPU. With data files containing less

han 10,0 0 0 rows, CrossVis maintains responsive interactions and

endering. As row counts are increased, responsiveness tends to

uffer. However, drawing such a large number of lines in PCPs and

oints in scatterplots is often not useful due to overplotting side

ffects that make it difficult to see patterns. In these situations,

rossVis is designed to show histograms and / or summary statis-

ics. These higher level views are capable of revealing patterns for

arger segments of data and the user can select subsets using the

nteractive query techniques to draw polylines on demand. This

cheme leverages a level of detail hierarchy to allow exploration of

ata sets containing upwards of 10 0,0 0 0 rows and a dozen or more

olumns. Further performance enhancements can be achieved, but

hese data scales represent a sweet spot for our targeted users. 

.2. New axis representations for parallel coordinates 

The main visualization panel extends the PCP method to in-

lude new representations for specific data types and statistical

nformation. PCP polylines correspond to row tuples in the data

odel and vertical axes to columns. In addition to subtle refine-

ents (e.g., incremental line rendering, automated axis layouts),

he CrossVis PCP design includes new axis representations support-

ng additional data types (addressing R1 ), supplemental displays of

tatistical information (addressing R5 ), and focus+context scaling

addressing R6 ). In the remainder of this section, these extensions

re presented. 

.2.1. Numerical axis representation 

Numerical PCP axes are augmented with graphical statistical

ummaries (see Fig. 3 ) and enhanced with the focus+context scal-

ng technique described in Section 4.2.5 . Both the typical value

mean or median) and dispersion range (two times the stan-

ard deviation range centered on the mean or the interquartile

ange) are represented in the axis bar interior. The user can tog-

le between mean- or median-based statistics using the applica-

ion menu. These statistics are calculated for the overall distribu-

ion of values, the selected data, and the unselected data. For the

https://github.com/ORNL/CrossVis
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Fig. 3. CrossVis numerical axes are augmented with graphical statistical summaries 

using both descriptive and frequency statistics. Overall summaries, selected / unse- 

lected summaries, and scatterplots are visually represented providing an aggregated 

view to complement the detailed PCP polylines. 
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verall distribution (see the ‘Wind’ axis in Fig. 3 ), the height of the

ray rectangle spanning the full axis bar width encodes the dis-

ersion value and a blue line encodes the typical value. The over-

ll statistical indicators serve as a baseline for comparisons against

maller subsets. 

Narrow versions of the overall statistical indicators (see ‘Lat’

xis in Fig. 3 ) summarize the selected and unselected data. Statis-

ics for the selected data are shown on the left and unselected on

he right. The selected and unselected statistical indicators are vi-

ually linked to the selected and unselected polylines using color;

he two dispersion rectangles are filled with the current selected

r unselected polyline colors, which the user can modify using but-

ons on the toolbar above the PCP panel (see Fig. 1 ). These indica-

ors are drawn over the overall indicators with a semi-transparent

ll color to avoid completely masking the overall statistical infor-

ation. 

Numerical axes can also show frequency-based statistics as ver-

ical histograms on the exterior of the axis bar (see Fig. 3 ). A stan-

ard histogram is computed for both the overall distribution and

he selected data using bins covering equally sized value intervals.

he number of bins is initially set to k = � √ 

n � , where n is the

umber of rows in the data model, but the user can adjust the bin

ount through the application menu. A symmetrical layout is used

ith histogram bin rectangles shown on both sides of the axis. The

ectangle width encodes the number of values falling within the

in’s range. The percentage of values that are currently selected for

ach bin is encoded as the width of a semi-transparent rectangle

rawn over the overall bin rectangle. The selected bin rectangle is

lled with the current selected polyline color for consistency. 

When both histograms and polylines are shown (see Fig. 9 b),

ense polyline clusters can negatively affect the decoding of bin

ounts. To deal with this situation, a thin white line is added to

he bin rectangle’s outer edge and the bin outline stroke color has

igh value contrast with the fill color. These color effects are in-

ended to make the histogram silhouette more salient. Some clut-
er is introduced due to the inability of the semi-transparent his-

ogram bins to completely mask polylines connecting to the axis

ehind them, but the polyline colors are muted and often the abil-

ty to see individual polyline axis intersections is useful. 

Before settling on the symmetrical histogram design, we exper-

mented with an alternative approach where bins were drawn on

nly one side of the axis. This unbalanced design made it diffi-

ult to see trends when an axis was positioned between two other

xes. Furthermore, the unbalanced design was visually inconsistent

ith the other visual elements, which are mostly symmetrical. We

lso experimented with mapping bin counts to the fill colors of a

and of smaller rectangles on the edge of the axis bar resembling

 vertical heat map. Although using color required less space and

voided polyline occlusion, it was more difficult to compare rela-

ive bin counts, especially subtle differences. The superiority of po-

itional to color encoding techniques is reported by Mackinlay [37] .

Histograms can be shown instead of the polylines to improve

erformance with large data. Histograms provide more detail than

he summary statistics, but less than individual lines. Thus, a se-

ies of increasingly detailed views is formed by showing statisti-

al graphics, histograms, and then individual polylines providing a

evel of detail scheme that addresses R5 . 

.2.2. Temporal axis representation 

Temporal axes (see Fig. 4 ) are similar to numerical axes. Be-

ause the data model stores the values as time instants, labels,

over values, and range selections are shown using date-time for-

atted strings addressing R1 . Temporal axis bars show a continu-

us value range and use the focus+context axis scaling technique

see Section 4.2.5 ). Instead of descriptive statistics, the axis inte-

ior displays a vertical temporal histogram where bin rectangles

re centered horizontally. To provide more space for the histogram,

emporal axis bars are wider than those of numerical axes. Locat-

ng the histogram inside the axis bar helps avoid the occlusion of

olyline intersections. Similar to histograms on the numerical axes,

he overall histogram bins are augmented with rectangles showing

he percentage of selected values. 

The symmetry of the temporal histogram visually unifies it with

istograms on numerical axes. Unlike numerical histograms, tem-

oral histograms are always displayed. In earlier designs, the tem-

oral histograms were drawn outside the axis bar. This alternative

esign had a stronger correspondence to the numerical histograms,

ut it left an empty axis interior. We compensated for the empty

pace by making the axis bar more narrow, but this approach dis-

upted the overall consistency of axis bar treatments. We settled

n the interior representation to capitalize on the opportunity to

void occluding polyline intersections while sacrificing some visual

nity. In the future, we plan to revisit the temporal axis design to

xplore methods that encode additional statistical information in

he axis bar interior (e.g., dynamic time warping similarity met-

ics [38] ). 

.2.3. Categorical axis representation 

The categorical axis representation (see Fig. 4 ) emphasizes the

elative frequency of categories. Categories are represented as rect-

ngles inside the axis bar. In Fig. 4 , the ‘Status’ axis has five cate-

ories. This figure also shows the two ways that category rectan-

les are displayed. On the left, the height of a category rectangle

s mapped to the percentage of rows associated with its category.

n this mode, the overall frequency trends are emphasized to sup-

ort comparisons, but categories with a small percentage of values

an be hard to see. The right ‘Status’ axis in Fig. 4 shows the equal

eight mode, which divides the axis bar height by the number of

ategories making smaller categories more visible. Users can also

nable the display of category names as labels drawn to the left of

he axis. 
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Fig. 4. CrossVis includes new axis representations for temporal, categorical, and image data. The unique characteristics of each data type inform the designs, which are 

augmented with statistical graphics and scatterplots. All the axes support interactive visual queries. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m  

b  

B  

d  

t  

t  

l  

h  

f

4

 

t  

b  

d  

o  

C  

a

 

a  

a  

e  

t  

t  

i  

E  

a  

t  

p  

t  

c

4

 

v  

v  
When polylines are selected, category rectangles are split into

two smaller rectangles with heights that encode the ratio of se-

lected (on the top and filled with the current selected polyline

color) to unselected (on the bottom and filled with the current un-

selected polyline color) polylines. For example, the ‘HU’ category of

the right ‘Status’ axis in Fig. 4 shows that about 75% of polylines

associated with the ‘HU’ category are selected. To select polylines

associated with a category, the user clicks on the category rectan-

gle. On the right ‘Status’ axis in Fig. 4 , the ‘HU’ category is selected.

A category is removed from a selection by clicking the category

rectangle a second time. When the user hovers over a rectangle, a

tooltip reveals detailed information about the category (see Fig. 8 ).

Polylines are connected to the vertical centers of the overall cat-

egory rectangles. In earlier designs, we evaluated representations

that used polygonal shapes covering the full height of the cate-

gory rectangles in a manner similar to the ParallelSets [26] de-

sign. However, during developer testing with data sets that had

a large number of rows the polygonal shapes were difficult to

read, especially between numerical (or temporal) and categorical

columns. By adopting the polyline representation over the polygo-

nal approach, we maintain visual consistency with representations

between the other axis types and avoid clutter. However, we rec-

ognize that there is room for future improvements of the polyline

representations on categorical axes. 

4.2.4. Image axis representation 

For columns consisting of images, CrossVis features a unique

axis representation. As shown in Fig. 4 , images are visually rep-

resented by horizontal tick marks inside the axis bar. The order-

ing of the image tick marks is determined by the file name. Tick

marks are colored using either the selected or unselected polyline

color. When the user hovers over a tick mark, its line’s thickness

increases and a small thumbnail copy of the corresponding image

is shown to the left of the axis bar. 

Images are selected by clicking on tick marks or dragging a se-

lection range. To deselect images, the user presses the control key
odifier while clicking or dragging. Selected images are indicated

y orange highlights on the left and right of the axis (see Fig. 4 ).

ecause selections are combined using an OR operation between

ifferent axes, it is possible that images can be included in selec-

ions on the image axis, but those images are not associated with

he current overall set of selected polylines (see the upper axis se-

ection on the ‘Diatoms Image’ axis in Fig. 4 ). In such cases, the

ighlighting of selected images prevents selections on image axes

rom becoming invisible. 

.2.5. Focus+context axis scaling 

Dense PCP polyline clusters make it difficult to decipher pat-

erns due to overplotting. Adjusting the opacity of polylines helps,

ut the problem is not completely eliminated, especially with large

ata sets. To cope with this issue and address R6 , CrossVis builds

n the dynamic axis scaling technique introduced in MDX [11] . The

rossVis implementation provides more focus range control and

dds support for temporal axes. 

As shown in Fig. 5 , upper and lower context regions are located

bove and below the main focus region. The focus region extents

re adjusted by dragging the thick gray lines at the focus range

dges. Moving the maximum value boundary line down decreases

he extent value and upward movement increases it. After the ex-

ents are modified, the display is redrawn, which spreads polylines

n the focus region out and pushes some polylines into the context.

specially when lines connect from an extreme edge of a neighbor

xis to the opposite edge of another axis (e.g., top of one axis to

he bottom of another), the context polylines can occlude the dis-

lay after axis scaling. As shown in Fig. 5 c, the user can choose

o hide polylines in either of the context regions to further reduce

lutter. 

.2.6. Bivariate axis representation 

Bivariate PCP axis representations are supported because some

ariables are more easily understood in relationship to another

ariable. For example, geographic patterns are more apparent
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Fig. 5. Focus+context axis scaling is provided for temporal and numerical axes. In 

(a), the focus range, marked by the thick gray lines between the focus region and 

the two outer context regions, is set to the overall data extent. In (b), the focus 

range lines are moved in magnifying data between the 50% and 75% percentile. In 

(c), polylines in the context region are hidden to reduce clutter. 
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hen latitude and longitude values are shown in a scatterplot (see

ig. 9 a). Univariate PCP axes make it hard to analyze such variables.

The bivariate axis is represented as a scatterplot using the same

esign as the supplemental scatterplots described in Section 4.3 .

owever, the bivariate axis is embedded in the PCP with poly-

ines of neighboring axes connecting to the y -axis of the scat-

erplot. By embedding the bivariate axis in the PCP, we alleviate

otential perceptual issues associated with separated views, such

s change blindness [39] . Any univariate axis can be combined

ith another to form a bivariate axis. The user can add bivariate

xes manually by specifying the x and y columns from the data

odel, or the user can drag and release the x -axis on the target

 -axis. 

.2.7. Additional interactive axis selection considerations 

The ability to query and filter data is essential for efficient ex-

loratory data analysis. The selection capabilities in CrossVis meet

omparative analysis needs in R2 . As shown in Fig. 3 , users can se-

ect polylines that fall within value ranges on numerical and tem-

oral axes. Multiple selections on multiple axes are supported (see

ig. 4 ) by directly dragging a range selection using the mouse over

n axis bar. The user can select a category by clicking on its associ-

ted rectangle on categorical axes and an image by clicking on its

ssociated tick mark. Users can set bivariate selections by dragging

ectangles within the scatterplots. For precise control, the user can

lso manually add selections for all axis types using the Axis Se-

ections tab (see bottom of Fig. 1 ). 

Axis selections are visually unified using an orange highlight

olor. For range selections, the fill color of the selection rectangle

ses the highlight color. For categorical and image selections, the

ectangle or tick mark is augmented with an orange halo. The user

an directly interact with the selection indicators to remove items

r adjust the extents. 

To compute the subset of selected polylines when multiple se-

ections are present, a disjunction (OR) operation is first applied

o selections on individual axes and then a conjunction (AND) op-

ration is applied to the selected values between axes. This logic

llows users to consider values spread out over non-contiguous

alue ranges for individual axes as well as relationships between

ifferent axes. 
.3. Supplemental scatterplots 

In addition to the ability to embed scatterplots directly in the

CP, small scatterplots are shown below the PCP axes (addressing

3 ). When an axis is highlighted (see Fig. 8 ), the supplemental

catterplots show the pairwise relationship of the highlighted axis

ith all other axes. That is, the x -axis of each scatterplot is mapped

o the highlighted axis and the y -axis is mapped to the axis above

he scatterplot. When no axis is highlighted (see Fig. 9 b), the scat-

erplots are shown in the space between the axes where the x -axis

s the left axis and the y -axis is the right axis. Both the supple-

ental scatterplots and the embedded bivariate axis scatterplots

an be configured to show tick marks on the axis boundary and

onvey univariate distributions. 

Scatterplots excel at conveying non-linear trends and clusters.

urthermore, scientists are usually familiar with scatterplots and

isplaying these in conjunction with the PCP, which is often new to

hem, can increase understanding. Thus, the combination of these

wo techniques is more valuable than showing either in isolation. 

.4. Axis correlation coefficient representations 

Supporting R2 and R3 requirements, correlations between nu-

erical axes are shown in several ways. The user may glean cor-

elations from polyline configurations in the PCP (e.g., ‘X’ shaped

rossings indicate negative correlations and more horizontal cross-

ngs indicate positive) and point configurations in the scatterplots.

n addition, direct encodings of the Pearson correlation coefficient,

 , are shown above the supplemental scatterplot as color-filled

ectangles (see Fig. 4 ). The r values are mapped to a color scale

here the most saturated blue represents a perfect positive cor-

elation, the most saturated red represents a perfect negative cor-

elation, and white represents no correlation. The user can hover

he mouse over a cell to see the exact r value. As shown in Fig. 1 ,

rossVis also shows a linked correlation matrix using the same

olor coding scheme as the indicators in the parallel coordinates

lot. To the right of the matrix heatmap, the r value color scale is

hown. 

.5. Image Set and Individual Image Views 

CrossVis provides two separate image views (addressing R3 ):

 tiled image set view and a detailed image view (see labels in

ig. 1 ). A slider at the top of both views allows adjustments of

he image(s) size. The image set view is linked to the other vi-

ualizations in the main window. When polylines are selected, the

mages in the selection set are haloed with the selected polyline

olor. Likewise, the unselected images are haloed with the unse-

ected color. Furthermore, selected images are located at the top

f the image set view. In Fig. 1 , the cutoff between selected and

nselected images is visible after the fifth image of the fifth row. 

When the user double-clicks on an image in the tiled view, a

etailed view appears (see Fig. 1 at bottom) making it easier to

ocus on a specific image. In Fig. 6 , the detailed image view shows

 magnified region of the image where some of the dark circular

hapes (see yellow box) of the microscopic view are not enclosed

y red outlines that were added by a pore detection algorithm. 

. Two practical scientific use cases 

In this section, we present two scientific use cases of CrossVis

o demonstrate its data exploration capabilities. The first focuses

n understanding the results of an artificial neural network (ANN)

esigned to classify microscopic imagery; the motivating scenario

hat inspired the development of CrossVis. The second describes

xploration of a historical hurricane observation data set, and it
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Fig. 6. The detailed image view allows scientists to visually examine images associ- 

ated with polylines in the PCP. Here the view shows a diatom image where a pore 

detection algorithm failed to label two pores, outlined by the yellow box annota- 

tion, possibly because the boundary between the pores is blurred (For interpreta- 

tion of the references to color in this figure legend, the reader is referred to the 

web version of this article.). 
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3 HURDAT2 is available at https://www.nhc.noaa.gov/data/ . 
illustrates CrossVis’s capacity to discover, investigate, and validate

patterns in a larger and more complex data set as well as its suit-

ability as a general purpose exploration system. 

5.1. Use Case 1: Understanding neural network image classifications 

in genetic engineering 

Scientists at Oak Ridge National Laboratory’s Center for

Nanophase Materials Science (CNMS), one of whom is a co-author

of this paper, used an ANN to automatically classify scanning elec-

tron microscope (SEM) images of diatoms, some of which were ge-

netically modified. The ANN predicts whether images correspond

to genetically modified (‘MODIFIED’) diatoms or not (‘WILD’). A di-

atom is a unicell alga with a silica cell wall. Diatoms are attrac-

tive candidates for functional systems of materials with applica-

tions ranging from photonics, sensing, filtration, and drug deliv-

ery [40,41] . The scientists used CrossVis to analyze the ANN results

and the following narrative captures some of their findings. 

In addition to the ANN classification of ‘WILD’ or ‘MODIFIED’,

the scientists computed a number of parameters that quantify

characteristics of pores detected in the images: density of pores,

mean area of pores, and the percentage of area occupied by pores

relative to the total area of the valve captured in an image. Ad-

ditionally, pore area distribution was extracted and fitted with

a Gaussian distribution to yield two more parameters: Gaussian

value and Gaussian sigma. These parameters, in combination with

a variance metric, yield a total of six quantitative values that sup-

plement the categorical value output from the neural network clas-

sification. The goal of this study was to understand the significance

of these parameters for distinguishing between modified and un-

modified diatom images. 

We begin by selecting the ‘MODIFIED’ category on the ‘Type’

axis (see orange highlight on ‘MODIFIED’ category in Fig. 1 ). This

action associates the selected polylines and summary statistics

(shown in median/IQR mode) with images marked as ‘MODIFIED’

and the unselected with ‘WILD’ images to allow comparative anal-

ysis. In the tiled image view, the ‘MODIFIED’ classified images at

top are haloed with the selection color and the ‘WILD’ images are

below. This view reveals that ‘WILD’ images appear more uniform
nd have more pores (pores are outlined in red by a separate pro-

ess) as compared to the ‘MODIFIED’ images, which exhibit more

ixel variance and wider gaps between pores. 

The variance is particularly evident in the hover image on the

Diatoms Image’ PCP axis in Fig. 1 . The hover image is located at

he intersection of row 2 and column 5 in the tiled image view.

ig. 6 shows a magnified view of the detailed image window at the

ottom of Fig. 1 . The image shows that two pores with fuzzy edges

t the lower right corner (see yellow highlight box) were missed

y the pore detection step. Several other missed pores are appar-

nt in top detail image view on the right in Fig. 7 . Visual inspec-

ions using CrossVis give scientists the ability to drill-down and

nd such subtle patterns, which in this case provides an opportu-

ity to improve the pore detection process. Furthermore, CrossVis’s

bility to display the images at multiple scales helps scientists see

hat the two image sets are visually distinct. 

We shift our attention to the PCP to explore quantitative trends.

n Fig. 1 , the IQR rectangles for the ‘Pore Mean Area’, ‘Expected

aussian Value’, and ‘Pore Density’ axes show the most separation

etween the two image categories, which suggests that these are

istinguishing features. The ‘Pore Mean Area’ and ‘Expected Gaus-

ian’ axes exhibit a strong positive correction ( r = 0 . 97 ), as indi-

ated by a saturated blue square on the heatmap and nearly hor-

zontal polylines between the two PCP axes. This finding suggests

hat one of the two variables can be removed since together they

ail to add additional value. Having more overlap between the se-

ected and unselected IQR rectangles, the ‘Expected Gaussian’ axis

s a good candidate for removal. Both ‘Pore Mean Area’ and ‘Pore

ensity’ show clear separation between the two image categories,

ith ‘Pore Mean Area’ showing less overlap and fewer polylines

rossing the median line. 

In Fig. 8 , the ‘MODIFIED’ category selection on the ‘Type’ axis

s removed and a range selection on ‘Pore Mean Area’ for values

reater than the median is added. The selection captures 29 of the

9 images, most of which are of the ‘MODIFIED’ category. However,

ome ‘MODIFIED’ images are excluded and some ‘WILD’ images are

ncluded. The tooltip shows 7 of the 29 ‘WILD’ images are selected.

he tooltip for the ‘MODIFIED’ category (not shown) shows that

2 of the 29 images are selected. This finding confirms the signif-

cance of pore sizes and density that we observed from the earlier

isual inspections and it reinforces the importance of a multivari-

te process to accurately classify the images. As the materials sci-

ntist who led this analysis stated: “Such information suggests that

ot every single diatom in the ‘MODIFIED’ set underwent genetic mod-

fication, which was clearly revealed using CrossVis analysis. ”

A glance at the ‘Variance’ axis in Fig. 8 reveals two severe

utliers in the upper range. These two polylines are selected in

ig. 7 with the two associated images shown on the right. The

MODIFIED’ image discussed previously is shown and the wide

ange of pixel fluctuations in both images confirms the pixel vari-

nce. 

.2. Use Case 2: analyzing historical tropical cyclone observations 

The National Oceanic and Atmospheric Administration (NOAA)

aintains the Atlantic Hurricane Database (HURDAT2), 3 which

ontains information on the location, winds, central pressure, and

ize (since 2004) of all known tropical and subtropical cyclones in

he Atlantic basin between the years 1851 and 2017 [42] . HURDAT2

s important for understanding historical tropical cyclone trends,

ut the number of records (over 50,303 rows), number of variables

21 columns), and heterogeneous data types (categorical, temporal,

nd numerical) make it a challenge to analyze. 

https://www.nhc.noaa.gov/data/
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Fig. 7. Two outlier images are selected on the ‘Variance’ axis. The pixel variance of the images, both classified as ‘MODIFIED’, is evident in the thumbnails on the right. 

These images are outliers on all but the ‘Pore Density’ axis. 

Fig. 8. A numerical range selection is used to compare images with high and low ‘Pore Mean Area’ values. The separation of the IQR rectangles on the ‘Pore Mean Area’ axis 

suggests the importance of these axes for distinguishing between the two ‘Type’ categories (‘WILD’ versus ‘MODIFIED’). The ‘Type’ axis is highlighted, resulting in the display 

of scatterplots below the other axes. 
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In Fig. 9 a, the full HURDAT2 data set is shown. Despite the size

nd number variables, CrossVis maintains interactive performance

 < 1 sec ) during visual investigations. In the figure, scales for the

2 wind radii axes (located on the right side of the figure) are syn-

hronized to a common range and several values with ‘no data’

ind radii values (wind radii fields were omitted for storms prior

o 2004) are pushed into the context regions to achieve clearer

iews. The wind radii values provide wind swath size informa-

ion for the 34 knot (34kt), 50 knot (50kt), and 64 knot (64kt)

aximum wind ranges. For each range, four radii values are pro-

ided in nautical miles (nm) for the four quadrants: northeast (NE),

outheast (SE), southwest (SW), and northwest (NW). The view re-

eals that wind swaths grow tighter (less dispersed) for fields with

igher wind speed since the distance values decrease and associ-

ted wind speeds increase from left to right. 

The resulting view highlights five records (selected in Fig. 9 a)

ith remarkably large ‘SE_64kt’ values (see lines captured by the

ange selection on this axis). Using the numeric data table view

not shown), we find that these records are from Hurricane Maria

n 2005. With these records selected, it is evident that the south-

ast quadrant is larger than normal on the other wind region axes

‘SE_34kt’ and ‘SE_50kt’). The selection also shows that the west-

rn side of the storm swath has collapsed in the most intense wind

egion (0 nm for the ‘SW_64kt’ and ‘NW_64kt’ axes). 
On the ‘Status’ axis, we see that the records for Hurricane

aria 2005 are assigned the ‘EX’ category, which denotes an

xtratropical system in the middle latitudes (between 30 ◦ and

0 ◦ latitude) of Earth. The latitudinal location is visible in the ‘Lat

s. Lon’ axis. These observations are consistent with the tendency

f extratropical storms to become less symmetric in the middle

atitudes [43] and the straightforward way these complex relation-

hips are explored with CrossVis demonstrates its effectiveness in

ata verification and validation tasks. 

Fig. 9 b focuses on storm records between 2004 and 2017, which

ffer the most detail. We select the ‘IVAN’ and ‘KATRINA’ cate-

ories on the ‘Name’ axis highlighting records for Hurricane Ivan

2004) and Hurricane Katrina (2005), which were both major hur-

icanes that caused tremendous destruction. A high correlation be-

ween ‘Pressure’ and ‘Wind’ ( r = −0 . 94 ) is indicated by the highly

aturated red correlation indicator, scatterplot point configuration,

nd PCP polyline crossings. The statistical indicators also show

hat pressure values for these storms were lower than normal and

ind values were higher. Both storms progressed through different

tages of development, which accounts for the variation of values

n the ‘Status’ axis. After adjusting the focus range of the ‘Lat’ and

Lon’ axes to drill into on the affected geographic range, we ob-

erve that on average these storms were more southern and west-

rn in latitude and longitude, respectively. To put it another way,
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Fig. 9. CrossVis provides interactive techniques to cope with large multivariate data and the quality issues, such as missing data, that are common in scientific applications. 

In (a), the full NOAA HURDAT2 tropical cyclone data set is shown after we push ‘no data’ flagged values into the lower context region (see lines below 0.0 on the wind radii 

axes) and synchronize the 12 wind radii axis scales. Five outlier values on the ‘SE_64kt’ axis are selected originating from extratropical records of Hurricane Maria 2015. In 

(b), a view of records between 2004 and 2017 is shown with a selection on the ‘Name’ axis for Hurricanes Ivan and Katrina. 
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these storms lingered longer in the Caribbean and Gulf of Mexico

regions, as can be seen in the supplemental scatterplot below the

‘Lat’ and ‘Lon’ axes. 

6. Discussion 

CrossVis increases scientists’ capacity to develop a more com-

prehensive understanding of multivariate data, particularly when

heterogeneous data types are present, by providing flexible tech-

niques for quickly querying data and visually representing results.

The system offers a unique collection of analysis capabilities that

correspond to specific challenges scientists face. These challenges

were uncovered through prior collaborations and the process of

developing techniques to address them was executed in close col-

laborations with the scientists who now use the system. As we de-

veloped CrossVis and evaluated iterations with domain experts, we

observed indicators of its effectiveness and limitations. In this sec-

tion, we discuss these observations and reflect on the interdisci-

plinary design process. 

6.1. Domain expert feedback and observations 

The effectiveness of CrossVis is perhaps most apparent in a

more comprehensive discussion of the results of the ANN diatom

image classification project that our materials science collaborators

recently published [44] . That work focused on the ANN design
nd scientific implications to genetic engineering as opposed

o a detailed description of CrossVis, which the current work

rovides. Some findings related to explaining the diatom images

lassifications were revealed with an earlier version of CrossVis

nd communicated in the publication with figures from the main

CP visualization panel. The scientists stated that CrossVis signif-

cantly increased their understanding of the complex ANN process

nd, as the quote in Section 5.1 states, “clearly revealed ” complex

elationships in the data. Prior to using CrossVis, scientists were

orced to flip between static plots (e.g., scatterplots, histograms)

nd file system image viewers to compare features. Querying and

ltering the data involved running scripts to regenerate static plots,

hich slowed investigations and limited the number of different

ombinations of conditions that could be realistically viewed. Di-

ensionality reduction processes were also employed, but results

ere difficult to translate back to the original parameters. 

Scientists also noted that CrossVis helped them think in a more

ultivariate manner during analysis. For example, it became clear

hat multiple pore measures were instrumental in classifying the

mages. Although some variables were more correlated than others,

t was clear that no single variable could be tied to the results of

he ANN process. The expanded PCP visualization efficiently con-

eyed this condition through the interactive representations of im-

ges and categorical values with quantitative metrics. One domain

xpert mentioned that CrossVis “enabled faster pairwise comparative

ariable comparisons because we don’t have to pick through and cycle
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s  
etween a set of scatterplots .” Referencing the diatom image classi-

cation example in the previous section, this same expert noted

hat the correlation between ‘Pore Mean Area’ and ‘Pore Density’

as not apparent until the data was viewed in CrossVis. More-

ver, the PCP revealed that the ‘Pore to Total Area’ variable does

ot change between ‘WILD’ and ‘MODIFIED’ sets, which led to ad-

itional investigations. In the words of one expert: “Only by using

rossVis were we able to find that an increase in mean area of pores

aused a decrease in density of pores for the ‘MODIFIED’ set, and vise

ersa for the ‘WILD’ set, causing both sets to maintain approximately

he same ratio of pore area to total area .”

The scientists also found the ability to view categorical and nu-

erical data in a single system, especially with the image repre-

entations, particularly helpful in distinguishing between the two

ifferent image categories. The ability to select images of one cate-

ory and see the separation in values on the other numerical axes

as key to their identification of the most sensitive parameters for

he ANN classification process. 

The image visualization capabilities in CrossVis were added af-

er the previously mentioned publication on the ANN diatom im-

ge classification project. By integrating an image-based PCP axis

nd the linked image view panel, scientists noted increased pro-

uctivity because they didn’t have to rely on a separate image

iewer and manually link lines in the PCP to individual images.

hey felt that the image views helped to supplement the mostly

uantitative analysis, especially for investigating outliers and vi-

ually exploring specific image features (e.g.pores, skeleton struc-

ures). 

By viewing their data in new visual representations, scientists

ere encouraged to consider their data from fresh perspectives,

hich led to more creative analytical discourse. After an initial

raining session to help them understand the views, they were free

o explore the data using direct interaction techniques. Because it

as no longer a requirement to manually run scripts to query the

ata, CrossVis increased the number of combinations they could

onsider and expanded their depth of understanding of the data.

lthough the total time they invested in data analysis may have

een about the same as before, the direct query capabilities al-

owed them to consider more of the data and find unforeseen pat-

erns; two main issues we have observed in most of our collabora-

ions with domain scientists. 

.2. Limitations and future enhancements 

Although CrossVis works well in several scenarios, limitations

nd opportunities for improvement remain. In the remainder of

his section, we describe the most salient observations. 

.2.1. Providing more active computational guidance 

CrossVis relies on the user to form hypotheses and drive most

f the analysis. Statistical analytics provide hints at potentially sig-

ificant trends, but these are predominately passive requiring the

ser to see a visual indicator and follow the lead to deeper investi-

ation. In the current application, the statistical analytics primarily

upport the level of detail rendering scheme. 

To improve CrossVis, we envision the integration of automated

achine learning techniques that suggest key patterns and more

ctively guide the user during the analysis process. We have al-

eady explored the integration of multiple linear regression in our

rior work with the MDX system [11] . We are planning new meth-

ds to couple CrossVis visualizations with other approaches, such

s dynamic time warping to highlight similar time series trends

nd other anomaly detection routines. These techniques could be

esigned to capture user interactions, either implicitly or explic-

tly, and feed the examples as labels to the automated algorithms
or highlighting similar patterns in the full data volume, especially

n unseen sections of the data. 

.2.2. Increasing scalability 

CrossVis is a standalone application designed to run on laptops

nd workstations, which works well for typical data sets we have

ncountered but doesn’t scale smoothly to data sets that exceed

0s of gigabytes. To support larger data sets, like those generated

rom computer simulations in climate science, we are investigating

 distributed approach where the full data set resides on remote

igh performance systems. Analytical processing and query opera-

ions will be executed on the remote system and only the results

ill be transmitted to the client, where the interactive data visu-

lization components operate. Such a system could enable web-

ased visualizations of larger and more complex data sets, thereby

mproving accessibility and maintenance. 

.2.3. Refining the PCP axis representations 

We evaluated several variations of the overall CrossVis design

efore settling on the current version. One objective was to pack

s much useful information as possible into the axis representa-

ions without overloading the user. For example, the symmetrical

resentation of histograms on the numerical axes involved evalua-

ions of alternative solutions using various visual feature mappings.

e recognize that there is additional room for exploring enhanced

xis representations. Some of these (e.g., reclaiming the axis bar

nterior for time series plots or other statistical metrics, represent-

ng polyline connections for categories) are mentioned in the pre-

ious sections. Other future work involves supporting vertical PCP

xis orientations, as opposed to strictly horizontal, which may be

asier for deciphering histogram and summary views. We are also

nterested in new ways to represent multiple focus regions using

he focus+context axis scaling technique. This expansion could en-

ble exploration of multiple focus ranges on the same axis as well

s cascading axes that drill down into specific ranges. 

We are actively expanding the concept of embedding additional

ultivariate views into PCPs in a manner similar to the bivariate

xis scatterplots. Alternatives include leveraging additional visual

eatures (e.g., color, size, shape) to encode additional variables, pro-

iding three-dimensional views of volumes with plane slicing ca-

abilities, and embedding additional visualization techniques such

s miniature treemaps or graphs. Using a modular axis design, a

ide range of possibilities exist. 

.3. Reflections on the interdisciplinary design process 

CrossVis was developed in close collaboration with materials

cientists following a participatory design process where our col-

aborators were co-designers and primary users of the system. We

et with them regularly to discuss new developments, mock-ups,

nd evaluated use of the tool with their data sets. The design was

lso influenced by prior collaborations with scientists in climate,

ybersecurity, health care, and other domains. Such projects ben-

fit from clear objectives related to domain specific challenges,

hich ground feature developments and help fulfill the central

romise of data visualization; bringing the latest data visualization

dvances to data rich domains where they are needed. 

By integrating experts from data visualization and other do-

ains, interdisciplinary projects also benefit from a diversity of

deas. Domain experts teach data visualization experts about their

nalysis procedures, which often stimulates new interactive visual-

zation designs. On the other hand, data visualization experts en-

ighten domain experts about new data visualization techniques

nd trends, thereby bridging the gap between theoretical data vi-

ualization and practical applications. Our experience is that both
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sides welcome the engagements and the results are almost always

positive. 

Data visualization experts often strive to generalize their tech-

niques to maximize impacts on broader endeavors. At the same

time, it can be hard to avoid degrading performance in the mo-

tivating domain specific scenario. For example, CrossVis supports

reading data from CSV files while also supporting custom file for-

mats for our domain collaborations to enhance performance with

their data sets. If generalization impacts domain specific perfor-

mance, the payoff must be carefully weighed. Perhaps by sacrific-

ing some performance, domain experts will recognize the oppor-

tunity to use the technique with other data sets and the sacrifice

will be welcomed. In such cases were performance degradation is

unacceptable, the team may consider deploying specific builds of

the tools; one for general purpose use and others for specific ap-

plications. 

Interdisciplinary projects are challenging for data visualization

experts because they must exhibit agility in learning new domains

and concepts. By including the experts in the development team to

validate assumptions and algorithmic decisions, the knowledge gap

can be spanned and in the process data visualization researchers

gradually gain a more comprehensive understanding of the do-

main. Furthermore, this process engages domain experts and can

increase adoption rates as they share the techniques with others

in their field. Perhaps the greatest reward from such an activity is

when the experts publish results found with the new techniques,

an outcome that essentially validates the effectiveness of the ap-

proach and one that we experienced the development of CrossVis

with our materials science collaborators. 

7. Conclusion 

CrossVis extends the PCP concept by adding a range of new

axis representation techniques, interactions, and scalability exten-

sions to enable large scale, multivariate exploration of heteroge-

neous data. The overall design requirements were derived from key

challenges uncovered during close interactions with experts in a

variety of fields using prior multivariate visualization tools. The re-

sulting system helps scientists look at more of their data and find

new, and often unexpected, insights; two needs that are common

in most scientific domains. 

By working close with materials scientists to develop CrossVis,

we observed how it improved the depth of their analysis as well

as certain limitations and opportunities for future improvement.

Important patterns were uncovered by domain experts who used

CrossVis to interpret a neural network process for classifying mi-

croscopic images in a genetic engineering study. In the process

of developing and applying the system, we gained additional in-

sight into interdisciplinary collaborations to develop data science

systems, particularly visual analysis systems. Another scientific use

case described in the current work involves exploring a complex

hurricane observation data set and demonstrates the suitability of

CrossVis in general purpose data exploration. 

CrossVis is a general purpose visual analytics framework that

has also proven useful in other fields, such as cybersecurity, earth

system modeling, health care, and algorithmic performance analy-

sis. In the future, we will continue to expand and apply CrossVis

to other data rich domains while continuing our interdisciplinary

development strategy. 
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