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Abstract
To improve clinical care practice, it is important to under-

stand the variability of clinical pathways executed in different
contexts (e.g., pathways in different geographical locations, de-
mographics, and phenotypic groups). A common way of rep-
resenting clinical pathways is through network-based represen-
tations that capture trajectories of treatment steps. However,
first-order networks, which are based on the Markovian prop-
erty and the de facto standard model to represent transitions be-
tween steps, often fail to capture real trajectories. This paper in-
troduces a visual analytic tool to explore and compare pathways
represented in higher-order networks. Because each higher node
in the network is a subtrajectory (i.e., partial or full history of
treatment steps), the tool can display true sequences of treatment
steps and compute the similarity of the two networks in a space of
higher-order nodes. The tool also highlights areas in which the
two networks are similar and dissimilar and how a certain sub-
trajectory is realized differently in different pathways. The paper
demonstrates the tool’s usefulness by applying it to multiple an-
tidepressant pharmacotherapy pathways for veterans diagnosed
with major depressive disorder and by illustrating heterogeneity
in prescription patterns across pathways.

Introduction
Clinical pathways (CPs) are typically structured healthcare

plans designed to implement evidence-based clinical guidelines,
medical algorithms, and protocols [12]. Intended to improve
the quality of personalized care, establish cost-effective and
evidence-based care management, and standardize care proce-
dures, CPs have become increasingly important for clinical pro-
cess optimization and communication between different stake-
holders in clinical process management. To improve CPs or en-
force a new policy, it is important to capture CP variability in dif-
ferent contexts, such as hospitals in different geographical loca-
tions or demographic subgroups, and perform comparative analy-
sis for various outcome measures (e.g., cost, survival rate).
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A comparison of pathway pairs (i.e., pathway variants) is
often conducted by measuring topological similarities in their
graph representations (Figure 1 (Top)). The Markov property-
based (first-order dependency) network is mostly used to model
a pathway and portrays a compact and intuitive representation.
However, it does not show complete trajectories (i.e., treatment
histories), and thus often presents the wrong impression about
the treatment process. This paper adopts the higher-order net-
work [14] to represent a CP, in which a trajectory of a treatment
sequence appears as a node (Figure 1 (Bottom)).

A higher-order network invariably has a more complex struc-
ture than a first-order network. To handle the increased com-
plexity, we created the Clinical Pathway Visualization system
(CPViz). Given a number of CPs to compare, CPViz compares
distances between all pairs and offers interactive functionalities to
explore similar and dissimilar treatment patterns between a given
pair of pathways. As an example, we describe how CPViz is used
to conduct a comparative analysis of ten US Department of Veter-
ans Affairs (VA) antidepressant pharmacotherapy treatment path-
ways for an Operation Enduring Freedom (OEF) and Operation
Iraqi Freedom (OIF) cohort diagnosed with major depressive dis-
order (MDD) [1].

Background and Related Work
In this section, we briefly describe how clinical pathways can

be represented as higher-order networks. Also, we discuss previ-
ous studies focusing on visualizing clinical pathways and clinical
events. We conclude the section with a review of existing work
regarding higher-order network visualization.

Background: Higher-Order Network for Clinical
Pathways

A network, G = (V,E), is a graph with vertices, V , as ob-
jects and edges, E, as links between objects. In a first-order net-
work representation of a CP, V is a set of single treatment steps
(e.g., taking 50 mg of an antidepressant daily for 2 months). In
a higher-order network representation, v ∈ V may represent a se-
quence of treatment steps (e.g., starting with 25 mg of an antide-
pressant daily for 2 months followed by increasing the dose to 50
mg and continuing for 3 months). Formally, an nth-order node, v,
denotes a path through (s1, ...,sn−1,sn), where si is the i-th step
in the path. Although a node can represent a sequence of steps,
all other properties can be considered the same as the first-order
network. For example, a path from one node (h, i) to the next
node j (i.e., steps h–i) is denoted as (h, i)→ j, and its transition



Figure 1. A CP represented in two different network types: first-order network (top) and higher-order network (bottom). The first-order version denotes a

single treatment step as a node and the treatment transitions as edges, and the higher-order version denotes a sequence of treatment steps as a node and the

dependencies of the treatment steps as edges.

probability is

P((h, i)→ j) =
W ((h, i)→ j)

∑k W ((h, i)→ k)
, (1)

where W (i→ j) is the sum of connections i→ j found in the data.

Visual Analytics for Clinical Data
Most of previous studies on visualizing clinical pathways

and clinical events focused on summarizing large-scale electronic
health records (EHRs) as flow-based visualizations to highlight
frequent patterns of clinical events [7, 9] in order to aid decisions
for future health care plan [5, 8].

Perer et al. [9] preprocessed EHR data to extract and map in-
formation to hierarchical standard clinical diagnosis codes and de-
tect frequent patterns from the pre-processed data using Sequen-
tial PAttern Mining using a bitmap representation (SPAM) [2].
The visualization interfaces based on Sankey Diagrams represent
the frequent pathway events with which users explore paths of in-
terest in detail. Guo et al. [7] introduced a visual analytics system
that aligns clinical paths based on dynamic time wrapping and

segments into more detailed stages to help illustrate the progres-
sion of disease in the context of a care plan. DecisionFlow [5]
analyzes disease progresses and their outcomes in EHR by aggre-
gating patients at each stage of the disease. It was also designed to
handle varying sequences of events. DecisionFlow visualizes the
aggregated symptoms and their average development time for the
patients in color-coded paths using Sankey Diagram visualization.

Higher-Order Network Visualization

To the best of our knowledge, a very few works exist on the
visualization of higher-order networks. Processing a rich set of
information and complex dependencies in higher-order networks
are major obstacle to pattern discovery and interpretation. HoN-
Vis [13] delivered a significant contribution in this area. With a
global shipping network as an example, it demonstrated how an
interactive exploration of higher-order networks could help a deci-
sion process. Multiple coordinated visualizations allowed users to
quickly identify patterns of interest, and formation and evolution
of higher-order dependencies. HOTVis [10] proposed a dynamic
graph visualization algorithm that utilizes higher-order graphical



Figure 2. Exploration of higher-order dependencies (treatment sequences) in a CP using CPViz. The dominant sequences from MIN:C2 and MIN:C2-4 to

THE:INCREASE are shown. The graph on the bottom-left, which is part of a first-order network, shows difficulty in tracing the sequences.

models of causal paths in temporal data based on time slices. The
generated time-aware static visualizations of temporal graphs can
highlight patterns in the underlying temporal data. CCVis [6] also
utilized a higher-order network construction algorithm to extract
the critical sequences that lead to different transition probabili-
ties. Their algorithm extracted the critical activity sequences to
describe the online learning behavior patterns of students. In ad-
dition, coordinated multiple views provide an effective overview
of vast amounts of behavioral data as well as detailed comparisons
of individual student behaviors.

Design Requirements
The overall goal of exploring and comparing CPs repre-

sented as higher-order networks is to clearly visualize complex
dependencies and identify similarities between multiple CPs. To
achieve the goal, multiple requirements should be achieved. We
had many discussions with domain experts, such as clinicians and
health services researchers. We identified four design require-
ments below.

• R1. Exploring Higher-order Networks: The visualization
system should support effective exploration of higher-order
networks. It should reduce the visual clutter issue as com-
plex in structure of a higher-order network. Also, it should
support discovering important higher-order dependencies.

• R2. Identifying Salient Patterns: The visualization sys-
tem should support finding salient nodes (treatment or a se-
quence of treatments) and specific treatment patterns (e.g.,
aggressive or conservative).

• R3. Finding (Dis)Similar CPs: The visualization system
should enable users to find (dis)similar CPs. Given a set
of CPs, the system should provide the similarities of all CP

pairs.
• R4. Comparing CPs in depth: Given the similarity of all

pairs, the visualization system should be able to perform a
deep comparative analysis of the selected pair. Users need to
know how they are (dis)similar each other, such as different
dependency patterns.

Antidepressant Pharmacotherapy CP Model
Antidepressants are medications prescribed to treat

MDD [4]. Our pathway model was designed to represent
three aspects of pharmacotherapy sequences: dosage, ramping
up/down of dosage, and duration of dosage. Based on this model,
we designed a nomenclature for each step in a pathway using
intuitive labels. For example, SUB:INCREASE means ramp up
to subtherapeutic dosage, and THE:C4-9 means continue the
current therapeutic dosage for 4–9 months. To include different
antidepressant medications in the same pathway, we converted all
medications into Fluoxetine-equivalent doses. Table 1 shows all
the labels we use for the study.

Similarity Measure
We define the distance metric between two CPs using their

topological similarity and the fraction of patient cases that fall
on nodes and edges. Let M be a square matrix, and let mi j be
the value of the ith row and the jth column that represents the
transition probability of edge (vi,v j).

We compute the distance between two pathways using ran-
dom walks. More specifically, from each pathway, we randomly
select first-order nodes using proportions of their occurrences in
data as initial probabilities, and then we produce random walks
up to ten in length by traversing the network using the transition



Figure 3. The matrix view visualizes edges—intersections between rows and columns are displayed as squares in a 2D layout. Also, it shows edge weights

and the in/out-degrees of target and source nodes.

probability matrix, M. Formally, the distance between pathways
A and B is defined as

D(A,B) = 1−S(A,B) (2a)

S(A,B) =
∑

NAB
i AiBi

∑
NAB
i Ai

2
∑

NAB
i Bi

2
(2b)

Here, D(A,B) is the distance between the two pathways, A and
B, defined as one minus the similarity of two pathways, S(A,B),
where S(A,B) is the cosine value of the angle between the two
vectors derived from random walks on pathways A and B. The
dimension of each vector is the union of random walks gener-
ated from two pathways, and values are the number of times they
are generated. So, NAB represents the number of unique random
walks sampled at least once in pathways A or B. Ai and Bi rep-
resent the number of times that random walk i is sampled from A
and B, respectively.

To place all distances among stations in a global context, an
embedding space has been created by applying kernel PCA onto
a matrix where each row corresponds to pairwise distances to all
other stations from the given station. We tested various kernels
including linear, poly, RBF, sigmoid, and cosine. We then com-
puted Spearman’s correlation between D(A,B) and the euclidean
distance within each embedding space, where larger correlation
value means better similarity. As the result, the sigmoid kernel
was selected to create the embedding space.

Table 1. Labels used to denote treatment steps in a CP

Label Description
MIN Minimum dosage
SUB Subtherapeutic dosage (below 20 mg)
THE Therapeutic dosage (20–40 mg)

BMAX Below max dosage (40–60 mg)
MAX Max dosage (60–80 mg)

INCREASE Increase dosage
DECREASE Decrease dosage

C2 Continue for 2 months
C2-4 Continue for 2–4 months
C4-9 Continue for 4–9 months
C9+ Continue for 9+ months

Functional Aspects of CPViz
At a high level, CPViz provides two types of visual ana-

lytic functionalities: exploration of a single CP and comparison
of multiple CPs. The first is to sift treatment sequences that in-
volve steps of interest (e.g., all treatment sequences starting from
step MIN:C2 to step MAX:INCREASE). The second is to under-
stand how multiple CPs can be identified and grouped as similar
CPs and study how a given pair of CPs are similar or dissimilar.

Exploration of a Single Pathway
For browsing a given pathway, CPViz places a first-order net-

work version of the pathway over the higher-order version (Fig-



Figure 4. A heat map that represents similarities between all pairs of stations calculated by random walks (Left). 2D embedding space where all stations are

placed preserving their pairwise distances with the others (Right). The map is created using the random walk distances and kernel PCA (Right).

ure 1). Users can select steps of interest on the first-order net-
work, where steps are nodes, and the complete pharmacother-
apy sequences (i.e., paths or sequences of steps) that include
the selected steps are shown in the higher-order network. Fig-
ure 2 shows an example in which steps MIN:C2, MIN:C2-4,
MIN:C4-9, and MIN:C9+ are selected. We can see the two
nodes, MIN:C2 and MIN:C2-4, have fourth-order dependencies
ending THE:INCREASE and the connected paths and intermedi-
ate higher-order nodes are visualized. This decreases the visual
clutter issue significantly and enables efficiently extracting the
traces from the selected nodes to the highest-order nodes (R1).
To aid clinicians interpreting these paths, CPViz uses three differ-
ent colors to denote the type of the last step in the node. The dark
pink represents nodes with an increase in dosage, the green rep-
resents a decrease in dosage, and the yellow represents a continu-
ation of the same dosage. The radius of a node and the thickness
of an edge are proportional to the number of cases found in the
data. We also adopted a force-directed layout [3], which brings
together nodes with mutual connections to better track of paths of
interest (R1 and R2).

Comparison of Multiple Pathways
Given a number of pathways, CPViz offers another visual

analytic capability to compare pathways at two levels. First, it
shows similarities of all pairs of pathways by a grid-based heat
map, and places all pathways in a 2D embedding space so that
clusters of similar pathways can be detected (see Figure 4). Sec-
ond, when users select a square on the heat map, CPViz provides
an in-depth comparison of two selected pathways by visualizing
the edges that are both common and unique between them (see
Figure 5).

When comparing two pathways, CPViz displays a pathway’s
edges in a matrix, which we call the matrix view. As shown in
Figure 3, a square located in the ith row and the jth column is
an edge coming out of the ith node from the vertically arranged
nodes and going into the jth node from the horizontally arranged
nodes. The color of a square represents the edge weight, with the
minimum value colored in white and the maximum value in dark
red. Additionally, CPViz adds an in-degree histogram (number of

incoming edges) on the top and an out-degree histogram (number
of outgoing edges) on the right side. This helps identify hub nodes
(nodes with a large neighbor) and outliers (R1 and R2). The col-
oring scheme for histogram bars is the same as in Figure 2. To aid
visual analytics, CPViz shows labels as a tooltip when the mouse
hovers over a node even though the tooltip is not shown in this
paper. For edges, it shows tool tips that contain the source nodes,
target nodes, and edge weights.

The matrix view is also used to compare two pathways.
Given a set of pathways, CPViz illustrates all pairwise similari-
ties in a heat map, which is shown as a lower-triangular form in
Figure 4 (Left) showing a displacement of each pathway that pre-
serves their similarities with all other pathways (R3). The colors
of squares indicate similar scores. The dark blue means that the
pair is relatively similar to each other, while the white color does
a dissimilar pair. The grey squares are pairs of the same HoNs.
Also, it shows the similarity metric and projection to a 2D space
in Figure 4 (Right). The similarity measurement is explained in
Section of Similarity Measure below.

Once a user selects a pair of pathways, three matrix views are
displayed: two for each selected pathway and the third for their
combined view. The third view displays the union edges from
both pathways for comparative analysis in depth (R4), as shown
in the rightmost view in Figure 5, in which the red squares repre-
sent the edges of the first pathway, and the blue squares represent
the edges of the second pathway. The outlined squares indicate
the edges that appear in both pathways. The histograms show the
in-degree and out-degree values of the combined node set. A his-
togram bar for a node that appears in the both pathways is split by
a black line to indicate the separate portions from each pathway.

Result
For the case study using CPViz, we collected data from

OEF/OIF veterans with MDD from ten different VA facilities.
We used data between January 1, 2006 and January 1, 2020 from
the VA’s Corporate Data Warehouse [11]. After processing data
based on the labels in Table 1, we constructed pathways as higher-
order networks. We conducted two types tasks using CPViz: (1)
identification of true pharmacotherapy sequences and (2) visual



Figure 5. CPViz for comparative analysis of two CPs. Three matrix views for the selected pair A (left) and B (center), and the combined view of A and B (right).

comparative analysis of multiple pathways to highlight clinical
differences.

Identification of Pharmacotherapy Sequences
Figure 2 illustrates CPViz identifying all pharmacotherapy

sequences that start with the minimum dosage. It only shows
paths of higher-order nodes that span through four first-order
nodes following MIN:START: MIN:C2, MIN:C2-4, MIN:C4-9,
and MIN:C9+ from the CP of a facility in Georgia (station ID
508). As illustrated, the three paths that lead to an increase of
the antidepressant to a therapeutic dosage (THE:INCREASE) are
highlighted. A closer investigation shows that no such path ex-
ists through MIN:C9+ nor MIN:C4-9. In other words, if a pa-
tient stays at the minimum dosage for more than 4 months, it is
less likely that the patient will ramp up to the therapeutic dosage.
In contrast, a network of Markovian dependency (i.e., first-order)
fails to expose this pattern. To highlight this issue, the bottom-
left corner of Figure 2, shows a part of the first-order version of
the CP in which we can find paths to THE:INCREASE from both
MIN:C4-9 and MIN:C9+.

Visual Comparative Analysis (Most Similar Pair)
The heat map shown in Figure 4 (Left) shows the all-pairwise

similarity scores of the ten pathways. We selected the pair with
the highest similarity: station ID 508 of Georgia and station ID
565 of North Carolina. The rightmost matrix view shows few
common edges at the upper-right area where the higher-order
nodes are placed, but it shows many common edges around the
lower-left area where the lower-order nodes are placed. We ob-
served the same pattern in the majority of pairs, which suggests
that the difference in patterns is small at the beginning of treat-
ment, but the difference increases as treatment sequences move
toward the end of the treatment step.

Visual Comparative Analysis (Least Similar Pair)
Next, we select another pair of pathways that shows the

smallest similarity score: station ID 508 of Georgia and station
ID 589 of Missouri. Figure 6 illustrates the matrix view that com-
pares the two pathways. As suggested by the low similarity score,

CPViz exposes very few common edges between the two path-
ways. Most of all, CP 589 has noticeably more higher-order nodes
and edges than CP 508. A closer examination reveals that the two
pathways actually differ (R4). We call out three regions in the
matrix view to highlight the differences.

In region (1), the edges of CP 589 (blue) run diagonally up-
wards, whereas no such edges are found in CP 508 (red). This
means that many lower-order nodes progress into higher-order
nodes in CP 589. In other words, there are more unique paths that
include higher-order ones in CP 589 than in CP 508. Region (2)
shows that CP 589 has two target nodes with high in-degree val-
ues: BMAX:INCREASE and MAX:INCREASE, whereas the same
nodes in CP 508 have small in-degree values. In region (3), there
are some edges (paths) from minimum and subtherapeutic dosage
treatments to below max and max dosage treatments. This means
that CP 589 has more aggressive treatment sequences (i.e., ramp-
ing up to maximum dosage and bypassing therapeutic or subther-
apeutic dosages) than what we see in CP 508.

Conclusion
Unlike pathways represented in the Markovian property

(first-order network), pathways of higher-order networks portray
both partial and complete histories because the nodes provide the
actual trajectories of treatment sequences, although they are of-
ten too complex to comprehend. CPViz offers interactive visual
analytic functionalities for higher-order networks to facilitate the
exploration of a single pathway and the comparison of multiple
pathways. We demonstrated that CPViz captured some treatment
sequences from a higher-order CP, which was infeasible with first-
order networks. We also showed that CPViz exposes heterogene-
ity in the prescription of antidepressants across different pathways
by mapping and visualizing dependencies of connections between
treatment sequences.
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Figure 6. Matrix view comparing pathways of two VA facilities: station ID 508 from Georgia (red squares) and station ID 589 from Missouri (blue squares).

The view shows that CP 589 has more longer treatment sequences and more aggressive paths that increase dosage to the maximum dosage and bypass the

therapeutic dosage.
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