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Abstract—Recent advancements within smart neighborhoods
where utilities are enabling automatic control of appliances
such as heating, ventilation, and air conditioning (HVAC) and
water heater (WH) systems are providing new opportunities
to minimize energy costs through reduced peak load. This
requires systematic collection, storage, management, and in-
memory processing of large volumes of streaming data for fast
performance. In this paper, we propose a multi-tier layered
IoT software framework that enables effective descriptive and
predictive data analysis for understanding live operation of the
neighborhood, fault identification, and future opportunities for
further optimization of load curves. We then demonstrate how we
achieve live situational awareness of the connected neighborhood
through a suite of visualization components . Finally, we discuss a
few analytic dashboards that address questions such as peak load
reductions obtained due to optimization, customer preference for
automatic control of appliances (do they override the automatic
control of HVAC?, etc.). !

Index Terms—IoT, agents, data analytics, behind-the-meter

I. INTRODUCTION

With the growing volume of intelligent devices such as
low-cost sensors with embedded communications and building
loads with microprocessor controls, the fierce volume of
reported information is expected to become a storing and pro-
cessing challenge. Early projections from a study developed in
2011-2012 for 2020 estimated that 50 billion internet of things
(IoT) devices would be deployed [1]. As the storing of reported
data by devices is growing rapidly, applications utilizing this
data are also expanding. Machine learning algorithms [2]-[6],
optimization and control techniques [7], and visualization [8]
are in development to better support both building owner and
the modern electric grid.

Machine learning utilizes large and significant data sets
to establish higher-quality information often for supporting
optimization and control decision making. This requires that
the data is available and can be retrieved at a high volume.
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Furthermore, the machine learning approach and information
to be repeated is often stored for post evaluation.

Optimization and control, depending on the method, can
provide a wealth of data. Model predictive control techniques
develop projections on expected system responses over a
time a window [7], [9]. Performing optimization at a 5-
minute resolution for 24 hours, easily leads to 288 data arrays
of the unknown variables within the optimization problem.
Depending on the frequency of the optimizations and the
number of undetermined variables this can quickly lead into
gigabytes (GB) or terabytes (TB) over an extended period.
Finally, retrieving this information for inspection dynamically
and quickly for a user can be very challenging.

II. BACKGROUND

Alabama Power has constructed a neighborhood called
Smart Neighborhood, to develop, deploy, and evaluate the
incorporation of intelligent systems within a community. In
this demonstration project, the 62 home community has been
retrofitted with IoT enabled heating, ventilation, and air con-
ditioning (HVAC) systems, water heater (WH) systems, refrig-
erators, and other devices. Each home is also sub-metered by
a circuit to identify general electrical consumption behaviors
and evaluate other potential opportunities in energy savings
and demand reductions. As part of this work, optimization
and control of the HVAC and WH systems to support the grid
in a transactive vision is under investigation [7]. A cloud-
based distributed control architecture has been developed and
is under evaluation for supporting both the home owner and
the electric grid needs.

In this paper, a platform for a post evaluation of large data
sets has been developed that reviews the model predictive con-
trol accuracy, establishes energy savings and cost savings from
both the customer side and utility side, customer overrides,
and outage statistics. This is for a community with intelligent
HVAC and WH systems, optimization and controls, transactive
negotiation, and learning.

IIT. SOFTWARE FRAMEWORK FOR ANALYTICS

In this section, we describe the software architecture for
connected community data analysis and its components. Fig-
ure 1 shows the conceptual architecture of the overall system.



Request URL Description

/get_hvac_status

Get the most recent status of all HVAC systems

/get_list_of_ids

Get the list of house identifiers

/get_forecast_hvac

Get the forecast data for HVAC of a specific house for a given timestamp

Get the raw sensor data for a given time period

/get_pg_channel

Table I: Example of REST APIs provided by the analytic server
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Figure 1: Connected Community Architecture

The architecture is composed of three layers - Data Layer,
Analytics Layer, and Application Layer. The goal and details
of each layer are as follows.

A. Data Layer

The goal of the data layer is to collect, transform, and
store a large volume of data from various data sources in
a connected community. Data including sensors, microgrid
and from optimization tasks need to be stored for analytic
purposes. Dealing with such data is challenging because they
are not only often large volume and have to be processed
on time. Also, because the existing variety of sensors and the
possibility of new sensors can be added in the future, database
systems should be flexible enough to adapt to changing data
structure or formats.

Each home in the community has connected equipment and
devices, and the community is supported by a microgrid. And,
a multi-agent system (MAS) distributes, collects information
from single homes and perform optimization tasks [7]. On the
MAS side, the historical data is not permanently stored; how-
ever, one of the goals of our analytic tasks is to understand the
yearly, monthly, and weekly data trends for a specific home or
the entire community, and it requires to maintain all historical
data in the database. A Data Collection Module is responsible
for pulling device, optimization, and microgrid data from the
MAS via RES API. The module pulls data every 5 minutes and
stores the data. To speed up the process, the data pulling task
is multi-threaded, where each thread takes care of specific kind
of data (e.g., optimization, sensor, etc.). The original data we
receive is in JSON (JavaScript Object Notation) format, which
is a flexible open-standard file format consisting of attribute-
value pairs and array data types. We chose MongoDB [10] to

store the retrieved data as MongoDB can naturally store JSON-
like documents with schema and provides expressive querying
interface and indexing. Scalability is another important factor,
as data being collected every 5 minutes from many homes
can grow rapidly. MongoDB scales horizontally using sharding
and supports load balancing across shards.

Although MongoDB is great for storing semi-structured data
like JSON documents; many analytic tools such as Tableau
and statistical methods still prefer tabular (i.e., relational)
data. Thus, ETL (Extract, Transform, Load) Module extracts
data from MongoDB collections, transforms the JSON docu-
ments into tabular data rows, then loads them into relational
tables in a PostgreSQL [11] database. Unlike MongoDB, a
relational database like PostgreSQL requires predefined table
schema to store data. The data is stored in five tables named
channel, sensor, thermostat, waterheater, forecast_hvac, and
forecast_wh. The module also collects data from an FTP server
where the additional microgrid data is stored in CSV (Comma
Separated Values) format. Microgrid data is stored in one
table in a PostgreSQL database which contains data collected
from battery, environment, generator, load bank, main feed,
relays, and solar. We created indices for both MongoDB and
PostgreSQL based on frequently requested queries.

B. Analytics Layer

The analytics layer has a single component analytic server,
which is a REST (Representational State Transfer) server [12].
Components in the application layer (e.g., data downloader,
web dashboards, Tableau dashboards) request data to the
analytic server, and the server is responsible for maintaining
the connections to MongoDB and PostgreSQL databases and
providing a unified interface to applications. MongoDB and
PostgreSQL use different query mechanisms, scripting, and
SQL respectively; however, via requesting data to the analytic
server, application developers do not need to use two different
ways to access data. We implemented the server using Tornado
Python web framework and asynchronous networking library
[13]. The current version of APIs includes 26 functions. Table I
shows several example of implemented functions and their
descriptions.

Note that some of the queries requested by the application
may take a very long time to process. We also notice that same
queries are often requested more than once in many cases. For
example, when a user uses a web dashboard, queries initiated
by default will be the same for the same date. Since our
database is dealing with historical data, where the data created
in the past will not be updated, the same API call always



returns the same results. When the analytic server receives an
API call, it first checks its local cache repository to see if
the same request has been processed recently. The URL of
the requested call along with its input arguments is used as
a search key for the cache repository. If the server cannot hit
a cache, then it sends database queries to the databases and
constructs the JSON response object that will be returned to
the client. Before returning the result to the client, the result is
converted into a byte stream and saved as a file using Python
object serialization. On the other hand, if the server can find
a cached file using the information of requested API call,
instead of sending queries to the databases, it will identify the
corresponding file and convert the byte stream into a Python
object. This process allows bypassing Input/Output between
the analytic server and the databases. How long and how
much size of cached query results can persist on the server is
configurable and can be adjusted by the server administrator.

Another important role of the analytic server is to standard-
ize the data and perform additional descriptive and predictive
based analysis on the existing data. For instance, different
time zones may have been used for different which requires
standardization before the data is exposed to applications; and
aggregation of data such as summarizing at daily, weekly and
monthly resolution, calculating summation, average, minimum
and maximum values across different data points can be
processed within the API functions.

C. Application Layer

The application layer is composed of several compo-
nents that can be used by users to perform analytic tasks.
The components include Community Data download toolkit,
Tableau dashboards [14], and Web dashboards. These com-
ponents communicate with the analytic server or directly with
databases to access the data and fulfill various users analytic
needs.

Community Data download toolkit is a simple toolkit that
allows users to download data for a specific home and time
in CSV format file. To download data directly from multiple
devices, optimization data, and microgrid data is not a straight-
forward task, because every device and system uses different
standards and/or APIs. Since our data layer and analytic layer
abstracts such complexity, the toolkit can pull the data by using
analytic servers APIs. Being able to download data in CSV
for users is very useful, as many external data analytics tools
(e.g., Excel, R, Jupyter notebook, etc.) can easily use this data
format.

Tableau-based visual analytics dashboards is an application
that provides visual analytics capabilities to users. Tableau [14]
is a software platform that can create interactive data visu-
alization dashboards, and it can either access our data layer
via Web Data Connector through the analytic server or access
PostgreSQL directly. An advantage of using Tableau is that
we can quickly explore the data and create visualizations with
various perspectives. We created Tableau workbooks and host
the workbooks using Tableau Server so that can users can
them using via their web browsers.
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Figure 2: Overrides Dashboard: May and June 2019

Lastly, we implemented an in-house Web-based visual ana-
Iytics dashboards to provide more custom data visualizations.
Although Tableau is a great tool for quickly exploring the data
and creating interactive visualizations, we needed to create
specialized visualization widgets designed for connected com-
munity, which are not supported by Tableau. We implemented
a web server using Tornado [13]. The web server renders web
pages according to HTTP requests by communicating with the
data server. We mainly used D3.js [15] and Twitter’s bootstrap
library [16] for our visualization components.

The details of the implemented visual analytic dashboards
will be discussed in Section IV.

IV. VISUAL ANALYTICS
A. Tableau-based visual analytics dashboards

We developed several Tableau-based dashboards to gain
a better understanding of impacts of automatic control of
appliances such as HVAC and WH on the peak load shifts
and potential cost savings shown in Figure 3. We chose two
days (May 17 and May 26, 2019) where the optimization was
not dispatched to the neighborhood for HVAC control on one
of the days and the dispatch was on the other day. Comparing
the peak power difference between these two days during the
peak price duration and off-peak price, it is clear that we save
nearly 12KW per day for a residential neighborhood of about
62 homes.

Figure 2 is another example of a web-based analytic dash-
board that displays the home owner’s preference to override
the automatic control of HVAC for the months of May and
June, 2019 aggregated by the day of the week for weeks
that automatic control (optimization dispatch is ON) was
enabled. The ambient temperature during those months is
being overlaid to understand the correlation between weather
changes and a home owner’s willingness to override their
thermostat schedule.

We provide a suite of visualization components in the form
of web dashboards. This visual analytics dashboard allows
users to explore, understand, and monitor large-scale data. The
dashboard provides multiple types of visualizations to show
different types and levels of data according to the purposes of
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Figure 3: Peak Analysis Dashboard: Comparison between 2
days in May 2019 when optimization is ON and OFF

analysis. In this section, we describe the features and benefits
of each component.

B. Web-based dashboards

Our visual analytics system queries data from the analytics
layer described in Section III-B to provide the live status of the
neighborhood, for example, total power consumption for 24
hours, HVAC and WH connection status, weather, optimization
data for a user-selected date. The main dashboard visualizes
the data in different visual representations, such as a stacked
stream graph and multiple coordinated views, as shown in
Figure 4. The multiple coordinated views are for displaying
various types of data for the individual house. The following
sections describe more details of the visualizations.

1) Main Power Streamgraph: The stacked streamgraph
provides an overview of the total main power usage patterns
for neighborhood and house level. The x-axis and y-axis of
the streamgraph are for the time in UTC and the power
usage, respectively. Each stream of the stacked stream graph
represents the main power usages for the individual house,
where the order of each stack and color for each stream
account for usage pattern. The pink dots at the bottom of main
power streamgraph in Figure 4 indicate how many homes’
devices got disconnected throughout the day.

2) Multiple Coordinated View: The multiple coordinated
views at the bottom of the dashboard are to display more
detailed information for a selected house in the streamgraph,
such as the power usages and temperatures of HVAC and water
heater and temperatures at zone levels. Note that every house
has different floor plans which differ in the number of zones.

The line graphs display HVAC and WH power usages (left
column), HVAC and WH temperatures (middle column), and
actual and setpoints temperature for each zone (right column).

The small plots under the line plots allow users to select
a specific time window which line graphs will then show the
plot at a specific time.

3) Area Charts: We provide specific area charts shown
in Figure 5. The top chart shows HVAC temperatures and
the bottom chart shows WH power. These charts display

forecasted and actual values and indicate when the forecasted
values are under or over-forecasting. If a forecasted value is
higher than an actual value, the area between is filled by green
color and vice versa by orange color. The filled areas between
actual and forecasted lines help recognize the differences.
There are two examples shown in Figure 5.

V. CHALLENGES AND FUTURE WORK

The databases tend to grow exponentially in size with
thousands of IoT devices reporting data to the cloud instance
for even a small residential neighborhood. The web-based
application providing overview dashboard functionality was
performing with slow response times. Performance profiling
of the application quickly identified database queries were the
bottleneck in performance. Also, SATA disk drives across NFS
with hundreds of millions of rows in the pertinent tables (with
even distribution) and very low memory settings for shared-
buffers and work-mem parameters was an issue.

Performance tuning for poor performing queries was imple-
mented through memory, SQL and index optimization. Further
optimization that we have experimented is clustering tables
based on the primary index that the table will be searched
by. Conceptually, the data is stored on disk sequentially by
the chosen index. This can lead to better performance from
Bitmap Index or Heap Scan operations by limiting the number
of pages read from disk. Also, a potential future optimization
step is table partitioning. Since PostgreSQL supports table
partitioning, enabling this feature allows the creation of parent-
child relationships between tables, with the child tables being
driven by a particular data field - for example, timestamp_utc.
This will drastically improve the performance of the query
against the analytic server.

VI. CONCLUSION

Automatic control of appliances such as HVAC and WH
systems are enabling utilities to reduce energy costs through
peak load shifting at a neighborhood level. This necessitates
systematic collection and management of streaming big data.
In this paper, we proposed a multi-tier software framework that
enables effective data analysis and demonstrated the benefits of
this implementation in providing live situational awareness of
a smart neighborhood of 62 homes in Alabama and supporting
daily operating and maintenance. We also demonstrate a few
analytic dashboards that answer important questions related
to peak load reductions obtained due to optimization, and
customer consumption and behavior pattern when they are
offered automatic control of appliances. Future studies will
focus on further refining this framework to enable development
of deep learning-based predictive model for quantification of
cost savings through optimized control of HVAC and WH
appliances based on electricity price.
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