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Abstract. Developing a clinical pathway is a labor-intensive process
that requires the participation of experts in various areas, including clin-
ical and informatics domains. This process will be greatly facilitated if
the conformity of clinical guidelines is precisely measured and significant
variations in adopting them are captured from electronic health records
(EHRs). From a data analytics perspective, this requires the establish-
ment of mapping between clinical concepts, their representations in terms
of EHR data elements, and their temporal formation as clinical activ-
ities. This paper introduces a data-driven informatics framework that
maps clinical concepts of EHR elements to an embedding space based on
their temporal co-occurrences and groups them into cohesive clusters of
clinical concepts called clinical pathway components (CPCs). The paper
illustrates how a set of CPCs is discovered by applying the framework to
a stable ischemic heart disease cohort of the US Department of Veterans
Affairs.

clinical pathway, representation learning, clustering

1 Introduction

A clinical pathway (CP) is a guided care map to promote qualitative care for a
specific cohort 1] in which both short- and long-term interventions are clearly
defined by clinical professionals over the course of treatment. Electronic health
records (EHRs) are patient-centric and real-time records, including treatment
history of patients, such as laboratory services, procedures, inpatient /outpatient
medications, radiology, nuclear medicine services, and consultations [5]. With the
increasing availability of EHRs and advances in data analytics, opportunities
to build data-driven approaches to infer evidence-based CPs have also grown
[2]. However, developing a CP is still a labor-intensive process that requires
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the participation of experts in various areas, including clinical and informatics
domains. Moreover, the ability to capture the dynamics and knowledge that
can be translated to actionable suggestions in enhancing CPs is greatly desired.
From a data analytics perspective, this requires the establishment of compact
and reusable representations of medical concepts from EHR data items that are
represented as a coherent course of treatment as clinical activities.

Formally, the authors define a group of EHR data items (i.e., record values)
to be contextually related if they tend to co-occur temporally and consistently
in patients’ clinical records. The authors further assume that such contextually
related groups are building blocks for constructing a CP, and thus they are
called CP components (CPCs), as illustrated in Fig. [1} First, EHR items of a
patient arranged by time stamps of their occurrences are defined as a trace,
which essentially represents a course of treatments performed to the patient.
Second, the traces of a given cohort into space are projected where elements
of high-temporal affinities are closely placed. Then, a trace trajectory (i.e., a
patient) is represented as a sequence of element groups. If the elements of such
a group are consistently found as a group in trajectories of other traces, the
elements are considered to be contextually related, thus forming a CPC. Hence,
constructing an embedding space in which each clinical item is located based on
their contextual similarity is key for identifying CPCs and CPs from the data.
This paper proposes an embedding approach to construct an affinity map and a
multistage clustering method to infer CPCs as basic care patterns in individual
patient traces and identify widely used care patterns across all patients. The
proposed method was applied to a stable ischemic heart disease (SIHD) cohort
of the US Department of Veterans Affairs (VA).

2 Methods

Extracting treatment patterns from the traces of a given cohort is a multistep
process that involves: (1) constructing clinical item embedding space, (2) iden-
tifying CPCs by mapping each trace into the space, and (3) consolidating CPCs
into treatment patterns.
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Fig. 1. Illustration of patient trace. Each patient trace is a temporal sequence of clin-
ical items. By the proposed method, contextually related clinical items are identified
and clustered as CPCs. Red circles indicate each clinical item, and colored rectangles
indicate CPCs.
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2.1 Definition of Terms

Key terms used in this paper are defined as follows:

* A patient trace, trace, is a collection of clinical items of each patient.

o A clinical item, or item, is a record of an individual clinical activity of a
patient with a time stamp, such as a prescription order of a medication,
order of a procedure, or order of a lab test.

* A clinical item token, or item token or token) is a unique identifier that refers
to each clinical item without time stamp or patient specification.

2.2 Constructing Clinical Item Embedding Space

For the construction of the embedding space for clinical items, this work em-
ployed the global vector representation learning algorithm used by GloVe [7]
to represent an item as a vector of pairwise temporal distances with all other
items. Formally, MT Dy, 7) is defined as the minimum time distance between
two clinical items ¢ and j in patient trace k. This is formulated in Eq. ,
where Ty; indicates the set of time points that clinical item ¢ appears in patient
trace k, and |z — y| is the temporal distance between two time points 2 and y.
Here, the unit of time is a day that can take a fractional form. Then, AM D(i, j)
denotes the average minimum temporal distance between 4 and j. Next, AMDs
of all-pairwise items for trace constitute the global matrix GM, as shown in Eq.

().
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2.3 Reduction of Global Matrix Dimension

There can be imbalances among EHR elements regarding their occurrences in
the data. More specifically, some items are extremely rare and are found in as
few as one patient trace. Because the global matrix is defined as an all-pairwise
matrix, as in Eq. , the imbalance in item occurrences and the sparsity caused
by the rare tokens might cause poor embedding representation and inefficient
usage of resources. To avoid this, the top items are selected, which account for
95% of the total occurrences in the data, and each row of the global matrix is
constructed with respect to the top items only. For example, suppose that there
are 1,000 unique items in a given EHR data and that the top 100 most frequently
used unique items contain 95% of all item occurrences, then the dimension of the
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constructed global matrix would be reduced from 1,000 x 1000 to 1,000 x 100,
as shown in Eq. .

RGM]Ji, k] = AMD(i, k), (2)

where ¢ indicates each item, and k indicates each selected top item.

Then, a kernel principal component analysis (PCA) with the cosine kernel
[9,/12] is applied to the reduced global matrix (Eq. ) to generate a metric space
in which contextually related items are located close. The distance between two
items is measured as the cosine distance of the original vectors, as shown in Eq.

(3)-

__RGM; - RGM;
IRGM; ||| RGM; ||

where D(4, j) is the cosine distance of two items i and j in the constructed metric

space, which indicates the contextual distance between two items, and RGM;
and RGM; indicate the row vector of RGM.

D(i,j) ~ 1

3)

2.4 Identifying Clinical Pathway Component Candidates

To identify care patterns in each patient trace, clinical items of each trace were
project into the constructed embedding space to capture contextually related
items as clusters, which are the candidates for CPCs. The process is described
as follows.

* First, clinical items in each patient trace are projected into the clinical item
embedding space (Fig. [2).

* Next, the projected items are grouped into k clusters by using a hierarchical
clustering algorithm with Ward’s linkage [10], where k& is an optimal number
of clusters determined by the silhouette score. [§].

2.5 Identifying Clinical Pathway Components

Because CPC candidates are identified from individual traces, each candidate is
essentially a variation of CPCs that is uniquely executed to a patient. Therefore,
aggregating these CPC candidates across the entire traces is a way of producing
CPCs as more cohesive and general treatment patterns. A heuristic method was
devised to compare and merge similar CPC candidates into a single CPC (Fig.
3). The steps of aggregation are described as follows.

* First, a list of unique CPC candidates sorted by the number of occurrences
is produced. Each CPC is defined as a set of items.

* Next, the top candidate from the list is selected as a CPC template and
then merged with the remainder of the individual candidates only when the
candidate is a super-set of the CPC template. If this occurs, the CPC is
removed from the list.
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Fig. 2. An example of the identification process of CPC candidates in two patients.
In both cases, the figures on the left indicate clinical items in each patient projected
into the embedding space; the gray dots represent the whole embedding space, and
the black dots represent clinical items of a patient. Figures on the right indicate the k
clustering results, where each color represents identified CPC candidates.

* Once all the candidates are processed, the next top candidate is selected as
the next CPC template, and the process repeats until the candidate list is
empty.

3 Results

This section presents the results of the proposed method applied to a cohort that
consists of 25,345 STHD patients. This cohort will be referred to as the SIHD
cohort. The following sections describe the dataset and present the treatment
patterns extracted from the data.

3.1 Data Description

A cohort of 25,345 patients was constructed by applying three rules in sequence.
The first rule identifies the patients in the VA Corporate Data Warehouse diag-
nosed with SIHD (125 codes as ICD-10s and 414 codes as ICD-9s [6]). The cohort
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Fig. 3. Example aggregation of CPC candidates into CPCs. By the proposed heuristic,
each CPC candidate identified in each patient is aggregated into CPCs to capture
universal care patterns among patients.

entry dates (i.e., first diagnosis) for patients are also critical, so the next rule
identifies the patients who received cardiovascular stress test based on outpa-
tient current procedural terminology and lists them with their dates. The stress
test is widely used to diagnose STHD. Assuming that the stress test would have
triggered the first diagnosis, the next rule temporally aligns the first diagno-
sis and the first stress test, and if they are 1 week apart, then the diagnosis
is assumed to be the first diagnosis. The temporal span of a patient trace was
set to 36 months following the first diagnosis. Thus, the 25,345 patient traces
contain 4,883,312 clinical items (i.e., tokens). These tokens were then mapped
into the Unified Medical Language System (UMLS) [3] concept codes. Because
some tokens could not be mapped to UMLS concepts, the final STHD cohort
data include 25,345 patient traces over 2,929,658 items.

3.2 Aggregation of Laboratory Panel Tests

Clinicians occasionally order a batch of lab tests called laboratory panel tests, or
lab panels. The authors found that 651,631 of the 2,929,658 clinical items in the
SIHD cohort were the lab panels, which took up more than 22% of all items.
Among those 651,631 items, there are 3,595 unique lab panels, many of which
are almost identical to one another. Some are only different by a few individual
lab tests. For example, at least 32 lab panels are very similar to one another and
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thus can all be annotated as a complete blood count panel. Hence, a heuristic
method was devised that clusters panels based on their compositions, and 3,595
lab panels were reduced into 689 panel clusters. Lab panels were replaced with
panel clusters. As a result, the final data include 2,314,855 clinical items of 25,345
patients with 7,876 unique tokens.

3.3 Construction of Clinical Item Embedding Space

A clinical item embedding space was constructed as described in Sections[2.2]and
[2:3] to the SIHD cohort data. A clinical item embedding space was constructed
by using STHD cohort data. The authors found that 907 tokens account for more
than 95% of all clinical items in the data. Therefore, with 7,876 unique tokens,
the constructed RGM (Eq. ) has a dimension of 7,876 x 907. Then, a PCA
with a cosine kernel was applied to the matrix, where the number of components
used was 2, which explained more than 99% of variances [9]. Hence, the final
embedding space has a dimension of 7,876 x 2.

3.4 Identification and Evaluation of Clinical Pathway Components

As described in Section2.4] clinical items were projected in each of the 25,345
patients into the constructed embedding space, and CPC candidates were iden-
tified (Fig. . As a result, 87,312 candidates were identified (i.e., an average of
3.44 candidates per patients). Next, as described in Section 87,312 candi-
dates were aggregated into 1,388 unique CPCs (Fig. [3). The authors consulted
with physicians for an evaluation of the identified 1,388 CPCs. To facilitate
their review process, for each CPC, a set of representative tokens and a set of
representative patient traces were provided.

* Representative tokens of each CPC are the 10 tokens with the highest F1
scores. The list of the top 10 tokens for each CPC is listed in the Supple-
mentary Table S1 provided on GitHub (https://github.com/mdy89/clinical
pathway_components).

* Ten representative patients were selected for each CPC according to their
occurrences in patient records. For example, if patient A’s record contains
1,000 clinical items, 900 of which are assigned to CPC_1, and patient B
has 2,000 items, 1,200 of which are assigned to CPC_1, then patient A is
considered more representative for CPC_1.

The clinical evaluation results of the top seven dominant CPCs (i.e., the most
frequently observed CPCs) are listed in Table [1| in which a clinical annotation
and fraction of occurrences of each group of patients are provided.

3.5 Identification of Care Patterns

In addition to the annotation results of the CPCs, the physicians also iden-
tified treatment patterns in terms of CPCs that consistently occur in patient
traces.Some basic treatment patterns were introduced that comprised the top
seven CPCs.
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Table 1. Clinical evaluation results of the top seven CPCs.

%_patients Note

Routine care. Mostly represented
CPC.1 73.71% by basic labs and outpatient treatments.
CPC2 47.77% Urgent /emergent carcya.c 1s'ch'em1a workup
for symptomatic individuals.
CPC.3  35.09% Scheduled or routine cardlac. 1§chem1a
workup and follow-up visits.
Establishing care that consists of drug screen,
CPC4 29.34% basic medications, and lab tests.
Cardiac hospital care when cardiac workup
CPCS5 24.42% is done elsewhere first (CPC_2 & 3 absent).
Cardiac hospital care when cardiac workup
CPC6 15.88% is done locally first (coupled with CPC_2 & 3).
Cardiac hospital care after CPC_3

CPC.T 12.09% or after transfer in.

* CPC_1 accompanied with either CPC_2 or CPC_3 is a cardiac workup fol-
lowed by routine care or coronary artery bypass surgery (CABG).

* CPC_2 with occasional CPC_1 and CPC_4 is an initial workup with cardiac
rehab.

* CPC_3 alone or occasionally with a CPC_1 is one of the following three
cases: (1) an initial evaluation and straight to cardiac rehab, (2) a routine
preoperative evaluation, or (3) an evaluation before antiarrhythmics.

* CPC_4 alone is an establishing care.

* CPC_5 accompanied with either CPC_1 or CPC_6 is a transferred-in situa-
tion in which a cardiac evaluation is first conducted, followed by CABG.

* CPC_2 or CPC_3 accompanied with either CPC_6 or CPC_7 is a cardiac
workup followed by cardiac surgery and hospital care.

During the evaluation, consistent care patterns—such as routine examina-
tion, cardiac workup, lab tests, basic medications, and cardiac hospital cares—
were identified, which are considered primary care patterns in STHD patients [11].
This indicates that this method can capture basic care patterns from EHR data.
However, because the proposed method focuses on the most widely used patterns
during each step of the process, such as during CPC identification heuristics
(Section 7 the resulting CPCs are also highly focused on the main patterns.
There is still a possibility that some minor but clinically significant events are
not explicitly represented in the results.
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4 Conclusion

This work introduced a data-driven approach to infer CPCs from EHRs. The
empirical evaluation on a VA SIHD cohort shows that the approach discloses
CPCs that are consistently found in actual patient cases. However, because the
proposed approach is strictly data-driven and unsupervised, it tends to favor
frequent patterns, thus potentially insensitive to rare but clinically meaningful
care patterns. To address this, the authors are considering the incorporation of
additional criteria to evaluate the clinical outcome of each patient, such as 30
day mortality [4]. This could provide a way to improve the approach to capture
patterns that are less frequent but could be clinically meaningful. For example,
a patient cohort can be subdivided into subsets of patients by the criteria. Then,
by applying the method to each subset of patients, the differences in patient care
patterns can be identified with different clinical outcomes. This can also highlight
minor but significant patterns that would be ignored before subdivision because
they are significant only in a smaller group of patients.
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